Skip to main content
Log in

Construction and Analysis of Amino Acid Substitution Matrices for Optimal Alignment of Microbial Rhodopsin Sequences

  • Original Research
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Pairwise alignment of amino acid sequences is the basic tool of bioinformatics, which is widely used both independently and within numerous more complex methods. The effectiveness of this tool critically depends on the scoring function used, which consists of a substitution matrix and gap penalties. In this work, amino acid substitution matrices for the superfamily of microbial rhodopsins (RHOD) were constructed and analyzed and then compared with a set of general-purpose matrices (BLOSUM, VTML, PFASUM). It was shown that all matrices allow constructing alignments of microbial rhodopsin sequences of almost the same quality, but only BLOSUM and VTML matrices and their linear combinations with RHOD matrices allow revealing homology between microbial rhodopsins and heliorhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Govorunova, E.G., Sineshchekov, O.A., Li, H., and Spudich, J.L., Microbial rhodopsins: Diversity, mechanisms, and optogenetic applications, Annu. Rev. Bio-chem., 2017, vol. 86,no. 1, pp. 845–872.

    CAS  Google Scholar 

  2. Pushkarev, A., Inoue, K., Larom, S., et al., A distinct abundant group of microbial rhodopsins discovered using functional metagenomics, Nature, 2018, vol. 558,no. 7711, pp. 595–599.

    Article  CAS  PubMed  Google Scholar 

  3. Needleman, S.B. and Wunsch, C.D., A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol., 1970, vol. 48,no. 3, pp. 443–453.

    Article  CAS  PubMed  Google Scholar 

  4. Smith, T.F. and Waterman, M.S., Identification of common molecular subsequences, J. Mol. Biol., 1981, vol. 147,no. 1, pp. 195–197.

    Article  CAS  PubMed  Google Scholar 

  5. Löytynoja, A., Alignment methods: Strategies, challenges, benchmarking, and comparative overview, in Evolutionary Genomics. Methods in Molecular Biology (Methods and Protocols), Anisimova, M., Ed., New Jersey: Humana Press, 2012, vol. 855, pp. 203–235.

    Google Scholar 

  6. Khan, F.I., Wei, D.Q., Gu, K.R., Hassan, M.I., and Tabrez, S., Current updates on computer aided protein modeling and designing, Int. J. Biol. Macromol., 2016, vol. 85, pp. 48–62.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson, J.D., Higgins, D.G., and Gibson, T.J., Clustal, W: Improving the sensitivity of progressive multiple sequence aligment through sequence weighting, position specific gap penalties and weight matrix choice, Nucleic Acid Res., 1994, vol. 22,no. 22, pp. 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  8. Kuznetsov, I.B., Protein sequence alignment with family-specific amino acid similarity matrices, BMC Res. Notes, 2011, vol. 4, p. 296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henikoff, S. and Henikoff, J.G., Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89,no. 22, pp. 10915–10919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Müller, T., Spang, R., and Vingron, M., Estimating amino acid substitution models: A comparison of Day-hoff’s estimator, the resolvent approach and a maximum likelihood method, Mol. Biol. Evol., 2002, vol. 19,no. 1, pp. 8–13.

    Article  PubMed  Google Scholar 

  11. The UniProt Consortium, UniProt: The universal protein knowledgebase, Nucleic Acids Res., 2018, vol. 46,no. 5, pp. 2699–2699.

    Article  CAS  PubMed  Google Scholar 

  12. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., The protein data bank, Nucleic Acid Res., 2000, vol. 28,no. 1, pp. 235–242.

    Article  CAS  PubMed  Google Scholar 

  13. Keul, F., Hess, M., Goesele, M., and Hamacher, K., PFASUM: A substitution matrix from Pfam structural alignments, BMC Bioinf., 2017, vol. 18, p. 293.

    Article  CAS  Google Scholar 

  14. Pearson, W.R., Rapid and sensitive sequence comparison with FASTP and FASTA, Methods Enzymol., 1990, vol. 183, pp. 63–98.

    Article  CAS  PubMed  Google Scholar 

  15. Sievers, F. and Higgins, D.G., Clustal Omega for making accurate alignments of many protein sequences, Protein Sci., 2018, vol. 27,no. 1, pp. 135–145.

    Article  CAS  PubMed  Google Scholar 

  16. Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acid Res., 2004, vol. 32,no. 5, pp. 1792–1797.

    Article  CAS  PubMed  Google Scholar 

  17. Stamm, M., Staritzbichler, R., Khafizov, K., and Forrest, L.R., AlignMe—a membrane protein sequence alignment web server, Nucleic Acid Res., 2014, vol. 42,no. W1, pp. W246–W251.

    Article  CAS  PubMed  Google Scholar 

  18. Kolbe, M., Besir, H., Essen, L.O., and Oesterhelt, D., Structure of the light-driven chloride pump halorho-dopsin at 1.8 Å resolution, Science, 2000, vol. 288,no. 5470, pp. 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  19. Kouyama, T., Kanada, S., Takeguchi, Y., Narusawa, A., Murakami, M., and Ihara, K., Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis, J. Mol. Biol., 2010, vol. 396,no. 3, pp. 564–579.

    Article  CAS  PubMed  Google Scholar 

  20. Gushchin, I., Reshetnyak, A., Borshchevskiy, V., Ishchenko, A., Round, E., Grudinin, S., Engelhard, M., Büldt, G., and Gordeliy, V., Active state of sensory rho-dopsin II: Structural determinants for signal transfer and proton pumping, J. Mol. Biol., 2011, vol. 412,no. 4, pp. 591–600.

    Article  CAS  PubMed  Google Scholar 

  21. Kato, H.E., Inoue, K., Abe-Yoshizumi, R., et al., Structural basis for Na+ transport mechanism by a light-driven Na+ pump, Nature, 2015, vol. 521,no. 7550, pp. 48–53.

    Article  CAS  PubMed  Google Scholar 

  22. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hethe-rington, K., Holm, L., Mistry, J., Sonnhammer, E.L.L., Tate, J., and Punta, M., Pfam: The protein families database, Nucleic Acid Res., 2014, vol. 42,no. D1, pp. D222–D230.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J., Mizuno, K., Murata, Y., Koide, H., Murakami, M., Ihara, K., and Kouyama, T., Crystal structure of deltarhodopsin-3 from Haloterrigena ther-motolerans, Proteins: Struct., Funct., Bioinf., 2013, vol. 81,no. 9, pp. 1585–1592.

    Article  CAS  Google Scholar 

  24. Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V.I., “Lomonosov:” Supercomputing at Moscow State University, in Contemporary High Performance Computing: From Petascale toward Exascale, Boca Raton: CRC Press, 2013, pp. 283–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Novoseletsky.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2019, Vol. 74, No. 1, pp. 27–33.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoseletsky, V.N., Armeev, G.A. & Shaitan, K.V. Construction and Analysis of Amino Acid Substitution Matrices for Optimal Alignment of Microbial Rhodopsin Sequences. Moscow Univ. Biol.Sci. Bull. 74, 21–25 (2019). https://doi.org/10.3103/S009639251901005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009639251901005X

Keywords

Navigation