Advertisement

Moscow University Biological Sciences Bulletin

, Volume 73, Issue 4, pp 222–228 | Cite as

Investigation of Characteristics of a Motor-Imagery Brain–Computer Interface with Quick-Response Tactile Feedback

  • M. V. LukoyanovEmail author
  • S. Y. Gordleeva
  • N. A. Grigorev
  • A. O. Savosenkov
  • Y. A. Lotareva
  • A. S. Pimashkin
  • A. Y. Kaplan
Physiology

Abstract

One of the approaches in rehabilitation after a stroke is mental training by representation of movement using a brain-computer interface (BCI), which allows one to control the result of every attempt of imaginary movement. BCI technology is based on online analysis of an electroencephalogram (EEG), detecting moments of imaginary movement representation (reaction of sensorimotor rhythm desynchronization) and presenting these events in the form of changing scenes on a computer screen or triggering electro-mechanical devices, which essentially is feedback. Traditionally used visual feedback is not always optimal for poststroke patients. Earlier, the effectiveness of tactile feedback, triggered only after a long-time mental representation of the movement, for several seconds or more, was studied. In this work, the efficiency of quick tactile feedback with motor-imagery-based BCI was investigated during classification of short (0.5 s) EEG segments. It was shown that quick tactile feedback is not inferior to the visual feedback and that it is possible to create BCI with tactile feedback that allows a quick reward of physiologically effective attempts of motor imagery and operates with acceptable accuracy for practical use. Furthermore, under certain conditions, tactile feedback can lead to a greater degree of sensorimotor rhythm desynchronization in subjects in comparison with the visual feedback, which can serve as a basis for constructing an effective neurointerface training system.

Keywords

brain-computer interface electroencephalography motor imagery rehabilitation feedback ideomotor training 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skvortsova, V.I., Stakhovskaya, L.V., Pryanikova, N.A., and Meshkova, K.S., Secondary prophylaxis of stroke, Cons. Med., 2006, vol. 8, no. 12, pp. 70–73.Google Scholar
  2. 2.
    Connell, L.A., Lincoln, N.B., and Radford, K.A., Somatosensory impairment after stroke: Frequency of different deficits and their recovery, Clin. Rehabil., 2008, vol. 22, no. 8, pp. 758–767.CrossRefGoogle Scholar
  3. 3.
    Ivanova, G.E., Suvorov, A.Yu., Stakhovskaya, L.V., Varako, N.A., Kovyazina, M.S., and Bushkov, F.A., Using simulator with multichannel biofeedback Imk-Ekzoskelet in a comprehensive program of rehabilitation of patients after stroke, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2017, vol. 67, no. 4, pp. 464–472.Google Scholar
  4. 4.
    Cifu, D.X. and Stewart, D.G., Factors affecting functional outcome after stroke: A critical review of rehabilitation interventions, Arch. Phys. Med. Rehabil., 1999, vol. 80, no. 5, pp. 35–39.CrossRefGoogle Scholar
  5. 5.
    Frolov, A.A., Mokienko, O.A., Lyukmanov, R.K., et al., Preliminary results of a controlled study of BCIexoskeleton technology efficacy in patients with poststroke arm paresis, Bull. Russ. State Med. Univ., 2016, no. 2, pp. 16–23.CrossRefGoogle Scholar
  6. 6.
    Vasilyev, A., Liburkina, S., Yakovlev, L., Perepelkina, O., and Kaplan, A., Assessing motor imagery in braincomputer interface training: Psychological and neurophysiological correlates, Neuropsychologia, 2017, vol. 97, pp. 56–65.CrossRefGoogle Scholar
  7. 7.
    Kaplan, A.Y., Neurophysiological foundations and practical realizations of the brain-machine interfaces in the technology in neurological rehabilitation, Hum. Physiol., 2016, vol. 42, no. 1, pp. 103–110.CrossRefGoogle Scholar
  8. 8.
    Frolov, A.A., Biryukova, E.V., Bobrov, P.D., Mokienko, O.A., Platonov, A.K., Pryanichnikov, V.E., and Chernikova, L.A., Principles of neurorehabilitation based on the brain-computer interface and biologically adequate control of the exoskeleton, Hum. Physiol., 2013, vol. 39, no. 2, pp. 196–208.CrossRefGoogle Scholar
  9. 9.
    Mulder, T., Motor imagery and action observation: Cognitive tools for rehabilitation, J. Neural. Transm., 2007, vol. 114, no. 10, pp. 1265–1278.CrossRefGoogle Scholar
  10. 10.
    Simmons, L., Sharma, N., Baron, J.-C., and Pomeroy, V.M., Motor imagery to enhance recovery after subcortical stroke: Who might benefit, daily dose, and potential effects, Neurorehabil. Neural. Repair, 2008, vol. 22, no. 5, pp. 458–467.CrossRefGoogle Scholar
  11. 11.
    Vuckovic, A. and Osuagwu, B.A., Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery, Clin. Neurophysiol., 2013, vol. 124, no. 8, pp. 1586–1595.CrossRefGoogle Scholar
  12. 12.
    Brouwer, A.-M. and van Erp, J.B.F., A tactile P300 brain-computer interface, Front. Neurosci., 2010, vol. 4, p. 19.Google Scholar
  13. 13.
    Van der Waal, M., Severens, M., Geuze, J., and Desain, P., Introducing the tactile speller: An ERP-based brain–computer interface for communication, J. Neural. Eng., 2012, vol. 9, no. 4, 045002.CrossRefGoogle Scholar
  14. 14.
    Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S., and Thakor, N.V., A brain-computer interface with vibrotactile biofeedback for haptic information, J. Neuroeng. Rehabil., 2007, vol. 4, p. 40.CrossRefGoogle Scholar
  15. 15.
    Muramatsu, Y., Niitsuma, M., and Thomessen, T., Perception of tactile sensation using vibrotactile glove interface, IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom), New Jersey, 2012, pp. 621–626.Google Scholar
  16. 16.
    Thurlings, M.E., van Erp, J.B.F., Brouwer, A.M., and Werkhoven, P., Controlling a tactile ERP-BCI in a dual task, IEEE Trans. Comput. Intell. AI Games, 2013, vol. 5, no. 2, pp. 129–140.CrossRefGoogle Scholar
  17. 17.
    Yajima, H., Makino, S., and Rutkowski, T.M., P300 responses classification improvement in tactile BCI with touch-sense glove, Signal and Information Processing Association Annual Summit and Conference (APSIPA), New Jersey, 2014, pp. 1–7.Google Scholar
  18. 18.
    Liburkina, S.P., Vasil’ev, A.N., Gordleeva, S.Yu., and Kaplan, A.Ya., The brain–computer interface based on motion representation with the vibro-tactile modality of stimuli, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2017, vol. 67, no. 4, pp. 414–429.Google Scholar
  19. 19.
    Lukoyanov, M.V., Gordleeva, S.Y., Pimashkin, A.S., Grigor’ev, N.A., Savosenkov, A.V., Motailo, A., Kazantsev, V.B., and Kaplan, A.Y., The efficiency of the brain-computer interfaces based on motor imagery with tactile and visual feedback, Hum. Physiol., 2018, vol. 44, no. 3, pp. 280–288.CrossRefGoogle Scholar
  20. 20.
    Oldfield, R.C., The assessment and analysis of handedness: The Edinburgh inventory, Neuropsychologia, 1971, vol. 9, no. 1, pp. 97–113.CrossRefGoogle Scholar
  21. 21.
    Doskin, V.A., Lavrent’eva, N.A., Miroshnikov, M.P., and Sharai, V.B., Test of differentiated self-esteem of the functional state, Vopr. Psikhol., 1973, no. 6, pp. 141–145.Google Scholar
  22. 22.
    Ahn, M. and Jun, S.C., Performance variation in motor imagery brain-computer interface: A brief review, J. Neurosci. Methods, 2015, vol. 243, pp. 103–110.CrossRefGoogle Scholar
  23. 23.
    Gordleeva, S.Y., Lukoyanov, M.V., Mineev, S.A., Khoruzhko, M.A., Mironov, V.I., Kaplan, A.Y., and Kazantsev, V.B., Exoskeleton control system based on motor-imaginary brain-computer interface, Sovrem. Tekhnol. Med., 2017, vol. 9, no. 3, pp. 31–36.CrossRefGoogle Scholar
  24. 24.
    Barsotti, M., Leonardis, D., Vanello, N., Bergamasco, M., and Frisoli, A., Effects of continuous kinaesthetic feedback based on tendon vibration on motor imagery BCI performance, IEEE Trans. Neural Syst. Rehabil. Eng., 2018, vol. 26, no. 1, pp. 105–114.CrossRefGoogle Scholar
  25. 25.
    Yao, L., Xie, T., Shu, X., Sheng, X., Zhang, D., and Zhu, X., Long-term paired sensory stimulation training for improved motor imagery BCI performance via Pavlovian conditioning theory, EMBS Conference on Neural Engineering (NER), New Jersey, 2015, pp. 90–93.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. V. Lukoyanov
    • 1
    • 2
    Email author
  • S. Y. Gordleeva
    • 1
  • N. A. Grigorev
    • 1
  • A. O. Savosenkov
    • 1
  • Y. A. Lotareva
    • 1
  • A. S. Pimashkin
    • 1
  • A. Y. Kaplan
    • 1
    • 3
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Privolzhskiy Research Medical UniversityNizhny NovgorodRussia
  3. 3.Department of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations