Advertisement

Moscow University Biological Sciences Bulletin

, Volume 73, Issue 4, pp 191–198 | Cite as

Methods of Gene Therapy for Treatment of Inherited Epidermolysis Bullosa

  • A. K. Beylin
  • N. G. GurskayaEmail author
  • E. A. Vorotelyak
Reviews

Abstract

Inherited epidermolysis bullosa (EB) is a heterogeneous group of rare genodermatoses with a high skin fragility manifested by the formation of destructive blisters and non-healing erosions on the skin and mucous membranes as a reaction to minor mechanical influences. There are three main types of EB: simple, junctional and dystrophic, each is caused by mutations in genes that encode epidermal, zones of the basement membrane or dermis proteins, respectively. The fourth type of EB is also described–hemidesmosomal or Kindler syndrome with impairments in kindlin-1 protein encoded by the FERMT1 gene. The existing ways to improve the living conditions of patients with EB are at different stages of development: some of them are already used in the clinic, while others are still under laboratory research. Various strategies are used, depending on the type of EB and the nature of mutation inheritance: from the functional gene replacement therapy based on the viral expression to the genome editing methods by programmable synthetic nucleases. The accumulated experience of allogeneic and autologous transplants of skin equivalents opens the prospect for using new approaches to functional gene and cell therapy ex vivo.

Keywords

inherited epidermolysis bullosa human skin epidermal stem cells gene therapy retrovirus genome editing CRISPR/Cas9 TALEN review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Has, C. and Bruckner-Tuderman, L., The genetics of skin fragility, Annu. Rev. Genomics Hum. Genet., 2014, vol. 15, pp. 245–268.CrossRefGoogle Scholar
  2. 2.
    Fine, J.D., Eady, R.A., Bauer, E.A., et al., The classification of inherited epidermolysis bullosa (EB): Report of the third international consensus meeting on diagnosis and classification of EB, J. Am. Acad. Dermatol., 2008, vol. 58, no. 6, pp. 931–950.CrossRefGoogle Scholar
  3. 3.
    Uitto, J., Bruckner-Tuderman, L., Christiano, A.M., McGrath, J.A., Has, C., South, A.P., Kopelan, B., and Robinson, E.C., Progress toward treatment and cure of epidermolysis bullosa: Summary of the DEBRA international research symposium EB2015, J. Invest. Dermatol., 2016, vol. 136, no. 2, pp. 352–358.CrossRefGoogle Scholar
  4. 4.
    Lee, J.Y.W., Liu, L., Hsu, C.K., Aristodemou, S., Ozoemena, L., Ogboli, M., Moss, C., Martinez, A.E., Mellerio, J.E., and McGrath, J.A., Mutations in KLHL24 add to the molecular heterogeneity of epidermolysis bullosa simplex, J. Invest. Dermatol., 2017, vol. 137, no. 6, pp. 1378–1380.CrossRefGoogle Scholar
  5. 5.
    McGrath, J.A., Recently identified forms of epidermolysis bullosa, Ann. Dermatol., 2015, vol. 27, pp. 658–666.CrossRefGoogle Scholar
  6. 6.
    Cohn, H.I. and Teng, J.M., Advancement in management of epidermolysis bullosa, Curr. Opin. Pediatr., 2016, vol. 28, no. 4, pp. 507–516.CrossRefGoogle Scholar
  7. 7.
    Mavilio, F., Pellegrini, G., Ferrari, S., Di Nunzio, F., Di Iorio, E., Recchia, A., Maruggi, G., Ferrari, G., Provasi, E., Bonini, C., Capurro, S., Conti, A., Magnoni, C., Giannetti, A., and De Luca, M., Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells, Nat. Med., 2006, vol. 12, no. 2, pp. 1397–1402.CrossRefGoogle Scholar
  8. 8.
    Siprashvili, Z., Nguyen, N.T., Gorell, E.S., Loutit, K., Khuu, P., Furukawa, L.K., Lorenz, H.P., Leung, T.H., Keene, D.R., Rieger, K.E., Khavari, P., Lane, A.T., Tang, J.Y., and Marinkovich, M.P., Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa, JAMA, 2016, vol. 316, no. 17, pp. 1808–1817.CrossRefGoogle Scholar
  9. 9.
    Hirsch, T., Rothoeft, T., Teig, N., et al., Regeneration of the entire human epidermis using transgenic stem cells, Nature, 2017, vol. 551, no. 7680, pp. 327–332.CrossRefGoogle Scholar
  10. 10.
    Bauer, J.W., Koller, J., Murauer, E.M., De Rosa, L., Enzo, E., Carulli, S., Bondanza, S., Recchia, A., Muss, W., Diem, A., Mayr, E., Schlager, P., Gratz, I.K., Pellegrini, G., and De Luca, M., Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells, J. Invest. Dermatol., 2017, vol. 137, no. 3, pp. 778–781.CrossRefGoogle Scholar
  11. 11.
    Sallach, J., Di Pasquale, G., Larcher, F., Niehoff, N., Rubsam, M., Huber, A., Chiorini, J., Almarza, D., Eming, S.A., Ulus, H., Nishimura, S., Hacker, U.T., Hallek, M., Niessen, C.M., and Büning, H., Tropismmodified AAV vectors overcome barriers to successful cutaneous therapy, Mol. Ther., 2014, vol. 22, no. 5, pp. 929–939.CrossRefGoogle Scholar
  12. 12.
    Petek, L.M., Fleckman, P., and Miller, D.G., Efficient KRT14 targeting and functional characterization of transplanted human keratinocytes for the treatment of epidermolysis bullosa simplex, Mol. Ther., 2010, vol. 18, no. 9, pp. 1624–1632.CrossRefGoogle Scholar
  13. 13.
    Chamorro, C., Mencía, A., Almarza, D., Duarte, B., Buning, H., Sallach, J., Hausser, I., Del Río, M., Larcher, F., and Murillas, R., Gene editing for the efficient correction of a recurrent COL7a1 mutation in recessive dystrophic epidermolysis bullosa keratinocytes, Mol. Ther. Nucleic Acids, 2016, vol. 5, e307.Google Scholar
  14. 14.
    Khan, I.F., Hirata, R.K., and Russell, D.W., AAVmediated gene targeting methods for human cells, Nat. Protoc., 2011, vol. 6, no. 4, pp. 482–501.CrossRefGoogle Scholar
  15. 15.
    Melo, S.P., Lisowski, L., Bashkirova, E., Zhen, H.H., Chu, K., Keene, D.R., Marinkovich, M.P., Kay, M.A., and Oro, A.E., Somatic correction of junctional epidermolysis bullosa by a highly recombinogenic AAV variant, Mol. Ther., 2014, vol. 22, no. 4, pp. 725–733.CrossRefGoogle Scholar
  16. 16.
    Gorell, E., Nguyen, N., Lane, A., and Siprashvili, Z., Gene therapy for skin diseases, Cold Spring Harb. Perspect. Med., 2014, vol. 4, a015149.CrossRefGoogle Scholar
  17. 17.
    March, O.P., Reichelt, J., and Koller, U., Gene editing for skin diseases: Designer nucleases as tools for gene therapy of skin fragility disorders, Exp. Physiol., 2018, vol. 103, no. 4, pp. 449–455.CrossRefGoogle Scholar
  18. 18.
    Perdoni, C., Osborn, M.J., and Tolar, J., Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa, Transl. Res., 2016, vol. 168, pp. 50–58.CrossRefGoogle Scholar
  19. 19.
    Aushev, M., Koller, U., Mussolino, C., Cathomen, T., and Reichelt, J., Traceless targeting and isolation of gene-edited immortalized keratinocytes from epidermolysis bullosa simplex patients, Mol. Ther. Methods Clin. Dev., 2017, vol. 6, pp. 112–123.CrossRefGoogle Scholar
  20. 20.
    Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., Kaplan, M., Iavarone, A.T., Charpentier, E., Nogales, E., and Doudna, J.A., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 2014, vol. 343, no. 6176, p. 1247997.CrossRefGoogle Scholar
  21. 21.
    Lamb, B.M., Mercer, A.C., and Barbas, C.F., 3rd directed evolution of the TALE N-terminal domain for recognition of all 5' bases, Nucleic Acid Res., 2013, vol. 41, no. 21, pp. 9779–9785.CrossRefGoogle Scholar
  22. 22.
    Koo, T., Lee, J., and Kim, J.S., Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9, Mol. Cells, 2015, vol. 38, no. 6, pp. 475–481.CrossRefGoogle Scholar
  23. 23.
    Cui, Y., Xu, J., Cheng, M., Liao, X., and Peng, S., Review of CRISPR/Cas9 sgRNA design tools, Interdiscip. Sci., 2018, vol. 10, no. 2, pp. 455–465.CrossRefGoogle Scholar
  24. 24.
    Kocher, T., Peking, P., Klausseger, A., Murauer, E.M., Hofbauer, J.P., Wally, V., Lettner, T., Hainzl, S., Ablinger, M., Bauer, J.W., Reichelt, J., and Koller, U., Cut and paste: Efficient homology-directed repair of a dominant-negative KRT14 mutation via CRISPR/Cas9 nickases, Mol. Ther., 2017, vol. 25, no. 11, pp. 2585–2598.CrossRefGoogle Scholar
  25. 25.
    Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F., Rationally engineered Cas9 nucleases with improved specificity, Science, 2016, vol. 351, no. 6268, pp. 84–88.CrossRefGoogle Scholar
  26. 26.
    Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P., Welch, M.M., Sousa, A.A., Harrington, L.B., Sternberg, S.H., Joung, J.K., Yildiz, A., and Doudna, J.A., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, Nature, 2017, vol. 550, no. 7676, pp. 407–410.CrossRefGoogle Scholar
  27. 27.
    Osborn, M.J., Starker, C.G., McElroy, A.N., et al., TALEN-based gene correction for epidermolysis bullosa, Mol. Ther., 2013, vol. 21, pp. 1151–1159.CrossRefGoogle Scholar
  28. 28.
    Shinkuma, S., Guo, Z., and Christiano, A.M., Sitespecific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 20, pp. 5676–5681.CrossRefGoogle Scholar
  29. 29.
    Saito, M., Masunaga, T., Teraki, Y., Takamori, K., and Ishiko, A., Genotype-phenotype correlations in six Japanese patients with recessive dystrophic epidermolysis bullosa with the recurrent p.Glu2857x mutation, J. Dermatol. Sci., 2008, vol. 52, no. 1, pp. 13–20.CrossRefGoogle Scholar
  30. 30.
    Webber, B.R., Osborn, M.J., McElroy, A.N., Twaroski, K., Lonetree, C.L., DeFeo, A.P., Xia, L., Eide, C., Lees, C.J., McElmurry, R.T., Riddle, M.J., Kim, C.J., Patel, D.D., Blazar, B.R., and Tolar, J., CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa, NPJ Regen. Med., 2016, vol. 1, 16014.CrossRefGoogle Scholar
  31. 31.
    Itoh, M., Kiuru, M., Cairo, M.S., and Christiano, A.M., Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 8797–8802.CrossRefGoogle Scholar
  32. 32.
    Turczynski, S., Titeux, M., Tonasso, L., Décha, A., Ishida-Yamamoto, A., and Hovnanian, A., Targeted exon skipping restores type VII collagen expression and anchoring fibril formation in an in vivo RDEB model, J. Invest. Dermatol., 2016, vol. 136, no. 12, pp. 2387–2395.CrossRefGoogle Scholar
  33. 33.
    Koller, U., Hainzl, S., Kocher, T., Huttner, C., Klausegger, A., Gruber, C., Mayr, E., Wally, V., Bauer, J.W., and Murauer, E.M., Trans-splicing improvement by the combined application of antisense strategies, Int. J. Mol. Sci., 2015, vol. 16, no. 1, pp. 1179–1191.CrossRefGoogle Scholar
  34. 34.
    Wally, V., Klausegger, A., Koller, U., Lochmüller, H., Krause, S., Wiche, G., Mitchell, L.G., Hintner, H., and Bauer, J.W., 5' trans-splicing repair of the PLEC1 gene, J. Invest. Dermatol., 2008, vol. 128, no. 3, pp. 568–574.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. K. Beylin
    • 1
    • 2
  • N. G. Gurskaya
    • 1
    • 2
    Email author
  • E. A. Vorotelyak
    • 1
    • 2
  1. 1.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations