Advertisement

Moscow University Biological Sciences Bulletin

, Volume 72, Issue 4, pp 211–217 | Cite as

Diversity of Polyketide Synthase Genes in the Genomes of Heterotrophic Microorganisms Isolated from Epilithic Biofilms of Lake Baikal

  • E. V. SukhanovaEmail author
  • E. A. Zimens
  • V. V. Parfenova
  • O. I. Belykh
Molecular Biology
  • 39 Downloads

Abstract

Many bacterial secondary metabolites, including pharmacologically promising compounds, are synthesized by polyketide synthases (PKS) enzyme complexes. In the present work, nucleotide sequences of the genes encoding 16S rRNA and PKS of heterotrophic bacterial strains isolated from epilithic biofilms of the littoral zone of Lake Baikal were determined. On the basis of molecular phylogenetic analysis of the 16S rRNA genes, six heterotrophic strains were identified: Serratia fonticola 1А and 10А, Pseudomonas umsongensis K10-2 and K10-3, Rheinheimera tilapiae K18, and Flavobacterium sp. 43-09. Sequencing of cloned amplification products for PKS gene cluster revealed 33 sequences. Genes involved in biosynthesis of antibiotics (difficidine, erythromycin, curacin, mixalamide, corallopyronin, and myxothiazol) and cytostatics (romidepsin, spiruchostatin, and disorazol) were found among homologous sequences. The low homology (50–83%) of the PKS amino acid sequences of Baikal bacteria with sequences from GenBank attests to the potential capability of strains to produce new, not yet studied bioactive compounds. The obtained results show that the studied strains may be of practical interest for biotechnological application.

Keywords

polyketide synthase genes 16S rRNA heterotrophic microorganisms Lake Baikal cloning epilithic biofilms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, X.-C., Qian, C.D., Fang, H.H., Wen, Y.P., Zhou, J.Y., Zhan, Z.J., Ding, R., Li, O., and Gao, H., Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillinresistant Staphylococcus aureus, Microb. Biotechnol., 2011, vol. 4, no. 4, pp. 491–502.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sponga, F., Cavaletti, L., Lazzarini, A., Borghi, A., Ciciliato, I., Losi, D., and Marinelli, F., Biodiversity and potentials of marine-derived microorganisms, J. Biotechnol., 1999, vol. 70, no. 1, pp. 65–69.CrossRefGoogle Scholar
  3. 3.
    Palomo, S., González, I., de la Cruz, M., Martin, J., Tormo, J.R., Anderson, M., Hill, R.T., Vicente, F., Reyes, F., and Genilloud, O., Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin, Mar. Drugs, 2013, vol. 11, no. 4, p. 1071.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“City of microbes” or an analogue of multicellular organisms?, Microbiology, 2007, vol. 76, no. 2, pp. 125–138.CrossRefGoogle Scholar
  5. 5.
    Bartrons, M., Catalan, J., and Casamayor, E.O., High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes, Microb. Ecol., 2012, vol. 64, no. 4, pp. 860–869.CrossRefPubMedGoogle Scholar
  6. 6.
    Staunton, J. and Wilkinson, B., Combinatorial biosynthesis of polyketides and non-ribosomal peptides, Curr. Opin. Chem. Biol., 2001, vol. 5, no. 2, pp. 159–164.CrossRefPubMedGoogle Scholar
  7. 7.
    Banskota, A.H., Mcalpine, J.B., Sorensen, D., Ibrahim, A., Aouidate, M., Piraee, M., Alarco, A.M., Farnet, C.M., and Zazopoulos, E., Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class, J. Antibiot. (Tokyo), 2006, vol. 59, no. 9, pp. 533–542.CrossRefGoogle Scholar
  8. 8.
    Kaluzhnaya, O.V., Kulakova, N.V., and Itskovich, V.B., Diversity of polyketide synthase (PKS) genes in metagenomic community of freshwater sponge Lubomirskia baicalensis, Mol. Biol. (Moscow), 2012, vol. 46, no. 6, pp. 790–795.CrossRefGoogle Scholar
  9. 9.
    Kaluzhnaya, O.V. and Itskovich, V.B., Distinctive features of the microbial diversity and the polyketide synthase genes spectrum in the community of the endemic Baikal sponge Swartschewskia papyracea, Russ. J. Genet., 2016, vol. 52, no. 1, pp. 38–48.CrossRefGoogle Scholar
  10. 10.
    Kalyuzhnaya, Ok.V., Lipko, I.A., Itskovich, V.B., Kalyuzhnaya, O.V., and Parfenova, V.V., PCR screening of bacterial cultures isolated from the freshwater sponge Lubomirskia baicalensis for the presence of secondary metabolite synthesis genes, Voda: Khim. Ekol., 2013, no. 7, pp. 70–74.Google Scholar
  11. 11.
    Geiger, A., Fardeau, M.-L., Falsen, E., Ollivier, B., and Cuny, G., Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis, Int. J. Syst. Evol. Micr., 2010, vol. 60, no. 6, pp. 1261–1265.CrossRefGoogle Scholar
  12. 12.
    Gavini, F., Ferragut, C., Izard, D., Trinel, P.A., Leclerc, H., Lefebvre, B., and Mossel, D.A.A., Serratia fonticola, a new species from water, Int. J. Syst. Bact., 1979, vol. 29, no. 2, pp. 92–101.CrossRefGoogle Scholar
  13. 13.
    Kampfer, P. and Glaeser, S.P., Serratia glossinae Geiger et al. 2010 is a later synonym of Serratia fonticola Gavini et al. 1979, Int. J. Syst. Evol. Micr., 2015, vol. 65, no. 5, pp. 1406–1408.CrossRefGoogle Scholar
  14. 14.
    Kwon, S.W., Kim, J.S., Park, I.C., Yoon, S.H., Park, D.H., Lim, C.K., and Go, S.J., Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea, Int. J. Syst. Evol. Micr., 2003, vol. 53, no. 1, pp. 21–27.CrossRefGoogle Scholar
  15. 15.
    Chen, W.-M., Yang, S.-H., Young, C.-C., and Sheu, S.-Y., Rheinheimera tilapiae sp. nov., isolated from a freshwater culture pond, Int. J. Syst. Evol. Micr., 2013, vol. 63, no. 4, pp. 1457–1463.CrossRefGoogle Scholar
  16. 16.
    McCammon, S.A., Innes, B.H., Bowman, J.P., Franzmann, P.D., Dobson, S.J., Holloway, P.E., Skerratt, J.H., Nichols, P.D., and Rankint, L.M., Flavobacterium hibernum sp. nov., a lactoseutilizing bacterium from a freshwater Antarctic, Int. J. Syst. Bact., 1998, vol. 48, no. 4, pp. 1405–1412.CrossRefGoogle Scholar
  17. 17.
    Zimens, E.A., Sukhanova, E.V., Shtykova, Yu.R., Parfenova, V.V., and Bel’kova, N.L., Antagonistic activity of heterotrophic microorganisms from biofilms on solid substrates of the littoral zone of Lake Baikal, Izv. Irkut. Gos. Univ., Ser. Biol. Ekol., 2014, vol. 7, pp. 91–98.Google Scholar
  18. 18.
    Søgaard, O.S., Graversen, M.E., Leth, S., et al., The depsipeptide romidepsin reverses HIV-1 latency in vivo, PLoS Pathogens, 2015, vol. 11, no. 9.Google Scholar
  19. 19.
    Su, C., Xiang, Z., Liu, Y., Zhao, X., Sun, Y., Li, Z., Li, L., Chang, F., Chen, T., Wen, X., Zhou, Y., and Zhao, F., Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2, BMC Genomics, 2016, vol. 17, no. 1, p. 865.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Isnansetyo, A. and Kamei, Y., Bioactive substances produced by marine isolates of Pseudomonas, Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 10, pp. 1239–1248.CrossRefGoogle Scholar
  21. 21.
    Gurney, R. and Thomas, C.M., Mupirocin: Biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium, Appl. Microbiol. Biotechnol., 2011, vol. 90, no. 1, pp. 11–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Lipko, I.A., Kalyuzhnaya, O.V., Kravchenko, O.S., and Parfenova, V.V., Identification of polyketide synthase genes in genome of Pseudomonas fluorescens strain 28Bb-06 from freshwater sponge Baikalospongia bacillifera, Mol. Biol. (Moscow), 2012, vol. 46, no. 4, pp. 609–611.CrossRefGoogle Scholar
  23. 23.
    Bockelmann, U., Janke, A., Kuhn, R., Neu, T.R., Wecke, J., Lawrence, J.R., and Szewzyk, U., Bacterial extracellular DNA forming a defined network-like structure, FEMS Microbiol. Lett., 2006, vol. 262, no. 1, pp. 31–38.CrossRefPubMedGoogle Scholar
  24. 24.
    Presta, L., Inzucchi, I., Bosi, E., Fondi, M., Perrin, E., Miceli, E., Tutino, M.L., Lo, Giudice A., de Pascale, D., and Fani, R., Draft genome sequence of Flavobacterium sp. strain TAB 87, able to inhibit the growth of cystic fibrosis bacterial pathogens belonging to the Burkholderia cepacia complex, Genome Announce., 2016, vol. 4, no. 3.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • E. V. Sukhanova
    • 1
    Email author
  • E. A. Zimens
    • 1
  • V. V. Parfenova
    • 1
  • O. I. Belykh
    • 1
  1. 1.Limnological Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations