Influence of tetrapeptide tuftsin on intracellular pH of mouse peritoneal macrophages

  • S. K. Pirutin
  • V. B. Turovetsky
  • N. Y. Sarycheva
  • A. B. Druzhko
  • V. N. Kalihevich
  • A. A. Kamensky


It has been shown by the method of probe microfluorimetry of single cells that tuftsin at concentrations of 0.1 and 1.0 μg/mL, increasing the phagocytic activity of murine peritoneal macrophages, causes biphasic changes in the intracellular pH (pHi) over time. First there was a decrease in pHi, reaching the limit in 5 min of incubation. Then, the pHi value increased until reaching the maximum 30 min after the interaction between the cells and the agent. Afterwards, the observed parameter (pHi) did not vary up to minute 55. It was shown that there was no increase in intracellular pH on the addition of the Na+/H+-exchange blocker ethylisopropylamiloride to the incubation medium in the presence of tuftsin. This fact suggests that the observed increase in pHi during tuftsin treatment in the second phase of cell response is associated with the Na+/H+ exchange system.


tuftsin macrophages intracellular pH Na+/H+-exchanger 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An, Y., Li, L., Yang, D., Jia, N., Xu, C., Wang, Q., Wang, S., and Yuan, S., Anticancer activity of tuftsinderived T peptide in postoperative residual tumors, Anti-Cancer Drugs, 2014, vol. 25, no. 8, pp. 857–867.CrossRefPubMedGoogle Scholar
  2. 2.
    Wieczorek, Z., Zimecki, M., Slon, J.J., and Siemion, I.Z., The immunomodulatory activity of tetra- and tripeptides of tuftsin-kentsin group, Peptides, 1994, vol. 15, no. 2, pp. 215–221.CrossRefPubMedGoogle Scholar
  3. 3.
    Wardowska, A., Dzierzbicka, K., Menderska, A., and Trzonkowski, P., New conjugates of tuftsin and muramyl dipeptide as stimulators of human monocytederived dendritic cells, Protein Pept. Lett., 2013, vol. 20, no. 2, pp. 200–204.CrossRefPubMedGoogle Scholar
  4. 4.
    Siemion, I.Z. and Kluczyk, A., Tuftsin: on the 30-year anniversary of Victor Najjar’s discovery, Peptides, 1999, vol. 20, no. 5, pp. 45–74.CrossRefGoogle Scholar
  5. 5.
    Khan, M.A., Aljarbou, A., Khan, A., and Owais, M., Immune stimulating and therapeutic potential of tuftsin-incorporated nystatin liposomes against Cryptococcus neoformans in leukopenic BALB/C mice, FEMS Immunol. Med. Microbiol., 2012, vol. 66, no. 1, pp. 88–97.CrossRefPubMedGoogle Scholar
  6. 6.
    Moolenaar, W.H., Tsien, R.Y., van der Saag, P.T., and de Laat, S.W., Na+/H+–exchange and cytoplasmic PH in the action of growth factors in human fibroblasts, Nature, 1983, vol. 304, no. 5927, pp. 645–648.CrossRefPubMedGoogle Scholar
  7. 7.
    Busa, W.B. and Nuccitelli, R., Metabolic regulation via intracellular PH, Am. J. Physiol., 1984, vol. 246, no. 4, pp. 409–438.Google Scholar
  8. 8.
    Frelin, C., Vigne, P., Ladoux, A., and Lazdunski, M., The regulation of the intracellular PH in cells from vertebrates, Eur. J. Biochem., 1988, vol. 174, no. 1, pp. 3–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Turovetskii, V.B., Zolotilin, S.A., Sarycheva, N.Yu., Kalikhevich, V.N., and Kamenskii, A.A., Effect of tuftsin on the functional activity and intracellular pH of murine peritoneal macrophages, Bull. Exp. Biol. Med., 1994, vol. 117, no. 3, pp. 267–269.CrossRefGoogle Scholar
  10. 10.
    Fridkin, M. and Najjar, V.A., Tuftsin: its chemistry, biology, and clinical potential, Crit. Rev. Biochem. Mol. Biol., 1989, vol. 24, no. 1, pp. 1–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Pirutin, S.K., Turovetskii, V.B., Kudryashov, Yu.B., and Rubin, A.B., Modification of damaging effect of ultraviolet radiation on peritoneal macrophage membranes in mice, Radiats. Biol. Radioecol., 2002, vol. 42, no. 2, pp. 151–154.PubMedGoogle Scholar
  12. 12.
    Heiple, J.M. and Taylor, D.L., Intracellular pH: its measurement, regulation and utilization in cellular functions, Proc. Conf. Held at the Kroc Foundation, Santa Ynez Valley, California, July 20–24, 1981, New York: Alan. R. Liss, 1982, pp. 21–54.Google Scholar
  13. 13.
    Pirutin, S.K., Turovetskii, V.B., Druzhko, A.B., and Kudryashov, Yu.B., Alteration of intracellular pH of macrophages after UV-irradiation, Radiats. Biol. Radioekol., 2004, vol. 44, no. 6, pp. 681–683.Google Scholar
  14. 14.
    Parkhomenko, I.M., Peritvili, G.V., Turovetskii, V.B., Kudryashov, Yu.B., Rubin, A.B., and Brovko, L.Yu., The effect of low doses of ionizing radiation on intracellular pH, ATP content and synthetic activity in cultured Chinese hamster fibroblasts, Radiobiologiya, 1993, vol. 33, no. 1, pp. 104–109.Google Scholar
  15. 15.
    Weisman, S.J., Punzo, A., Ford, C., and Sha’afi, R.I., Intracellular Ph changes during neutrophil activation: Na+/H+- antiport, J. Leukocyte Biol., 1987, vol. 41, no. 1, pp. 25–32.PubMedGoogle Scholar
  16. 16.
    Gottlieb, P., Hazum, E., Tzehoval, E., Feldman, M., Segal, S., and Fridkin, M., Receptor-mediated endocytosis of tuftsin by macrophage cells, Biochem. Biophys. Res. Commun., 1984, vol. 119, no. 1, pp. 203–211.CrossRefPubMedGoogle Scholar
  17. 17.
    Bar-Shavit, Z., Stabinsky, Y., Fridkin, M., and Goldman, R., Tuftsin-macrophage interaction: specific binding and augmentation of phagocytosis, J. Cell Physiol., 1979, vol. 100, no. 1, pp. 55–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Stabinsky, Y., Bar-Shavit, Z., Fridkin, M., and Goldman, R., On the mechanism of action of the phagocytosis- stimulating peptide tuftsin, Mol. Cell. Biochem., 1980, vol. 30, no. 2, pp. 71–77.CrossRefPubMedGoogle Scholar
  19. 19.
    Grinstein, S. and Rothtein, A., Mechanisms of regulation of the Na+/H+ exchanger, J. Membr. Biol., 1986, vol. 90, no. 1, pp. 1–12.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • S. K. Pirutin
    • 1
  • V. B. Turovetsky
    • 1
  • N. Y. Sarycheva
    • 2
  • A. B. Druzhko
    • 3
  • V. N. Kalihevich
    • 4
  • A. A. Kamensky
    • 2
  1. 1.Department of BiologyMoscow State UniversityMoscowRussia
  2. 2.Department of BiologyMoscow State UniversityMoscowRussia
  3. 3.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  4. 4.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations