Fetal valproate syndrome as an experimental model of autism

  • A. V. Malyshev
  • K. R. Abbasova
  • O. A. Averina
  • L. N. Solovieva
  • V. R. Gedzun
  • M. V. Gulyaev
  • V. A. Dubynin
Physiology

Abstract

High doses of valproic acid (VPA) can modify the activity of many genes by blocking histone deacetylases. Prenatal administration of VPA results in the development of fetal valproate syndrome in the offspring of laboratory animals. This syndrome is considered as a model of autism spectrum disorders. In this review, we discuss the characteristics of the brain state and activity during fetal valproate syndrome at different levels: from the molecular and cellular processes to the behavior. The characteristics of social interaction—the most relevant manifestations of autistic disorders—receive special attention. We present literature data and our own results.

Keywords

autism spectrum disorder valproic acid animal models social behavior review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Myers, S.M. and Johnson, C.P., Management of children with autism spectrum disorders, Pediatrics, 2007, vol. 120, no. 5, pp. 1162–1182.CrossRefPubMedGoogle Scholar
  2. 2.
    Rapin, I. and Tuchman, R.F., Autism: definition, neurobiology, screening, diagnosis, Pediart. Clin. North. Am., 2008, vol. 55, no. 5, pp. 1129–1146.CrossRefGoogle Scholar
  3. 3.
    Hellings, J.A., Nickel, E.J., Weckbaugh, M., McCarter, K., and Mosier, M., The overt aggression scale for rating aggression in outpatient youth with autistic disorder: preliminary findings, J. Neuropsychiatry Clin. Neurosci., 2005, vol. 17, no. 1, pp. 29–35.CrossRefPubMedGoogle Scholar
  4. 4.
    Christensen, J., Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism, J. Am. Med. Assoc., 2013, vol. 309, no. 16, pp. 1696–1703.CrossRefGoogle Scholar
  5. 5.
    Rodier, P.M., Ingram, J.L., Tisdale, B., and Croog, V.J., Linking etiologies in humans and animal models: studies of autism, Reprod. Toxicol., 1997, vol. 11, nos. 2–3, pp. 417–422.CrossRefPubMedGoogle Scholar
  6. 6.
    Schneider, T. and Przewlocki, R., Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism, Neuropsychopharmacology, 2005, vol. 30, no. 1, pp. 80–89.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, P.S., Wang, C.C., Bortner, C.D., Peng, G.S., Wu, X., Pang, H., Lu, R.B., Gean, P.W., Chaung, D.M., and Hong, J.S., Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity, Neuroscience, 2007, vol. 149, no. 1, pp. 203–212.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Roullet, F.I., Wollaston, L., Decatanzaro, D., and Foster, J.A., Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid, Neuroscience, 2010, vol. 170, no. 2, pp. 514–522.CrossRefPubMedGoogle Scholar
  9. 9.
    Go, H.S., Kim, K.C., Choi, C.S., Jeon, S.J., Kwon, K.J., Han, Sh., Lee, J., Cheong, J.H., Ryu, J.H., Kim, Ch., Ko, Kh., and Shin, C.Y., Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the gsk-3/-catenin pathway, Neuropharmacology, 2012, vol. 63, no. 6, pp. 1028–1041.CrossRefPubMedGoogle Scholar
  10. 10.
    Chomiak, T., Turner, N., and Hu, B., What we have learned about autism spectrum disorder from valproic acid, Patholog. Res. Int., 2013, vol. 2013, pp. 2013–2013.Google Scholar
  11. 11.
    Bescoby, C.N., Forster, P., and Bates, G., Fetal valproate syndrome and autism: additional evidence of an association, Dev. Med. Child. Neurol., 2001, vol. 43, no. 12, pp. 847–857.CrossRefGoogle Scholar
  12. 12.
    Malyshev, A.V. Experimental modeling of autism spectrum disorders and depression; the search for the tools for peptidergic correction, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2014.Google Scholar
  13. 13.
    Favre, M.R., Barkat, T.R., Lamendola, D., Khazen, G., Markram, H., and Markram, K., General developmental health in the VPA-rat model of autism, Front. Behav. Neurosci., 2013, vol. 7, Art. 88, pp. 1–11.CrossRefGoogle Scholar
  14. 14.
    Narita, M., Oyabu, A., Imura, Y., Kamada, B., Yokoyama, T., Tano, K., Uchida, A., and Narita, N., Nonexploratory movement and behavioral alterations in a thalidomide or valproic acid-induced autism model rat, Neurosci. Res., 2010, vol. 66, no. 1, pp. 2–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Kerr, D.M., Downey, L., Conboy, M., Finn, D.P., and Roche, M., Alterations in the endocannabinoid system in the rat valproic acid model of autism, Behav. Brain Res., 2013, vol. 249, pp. 2013–249.CrossRefGoogle Scholar
  16. 16.
    Matson, J.L. and Williams, L.W., Depression and mood disorders among persons with autism spectrum disorders, Res. Dev. Disabil., 2014, vol. 35, no. 9, pp. 2003–2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Mdamo, M., Moro, F., Imbrici, P., Martino, D., Roscini, M., Santorelli, F., Sicca, F., and Pessia, M., The emerging role of the inwardly rectifying K+ channels in autism spectrum disorders and epilepsy, Malta Medical J., 2011, vol. 23, no. 3, pp. 1–8.Google Scholar
  18. 18.
    Malyshev, A.V., Razumkina, E.V., Dubynin, V.A., and Myasoedov, N.F., Semax corrects brain dysfunction caused by prenatal introduction of valproic acid, Dokl. Biol. Sci., 2013, vol. 450, no. 1, pp. 126–129.CrossRefPubMedGoogle Scholar
  19. 19.
    Stovolosov, I.S., Dubynin, V.A., and Kamensky, A.A., Role of the brain dopaminergic and opioid system in the regulation of “child’s” (maternal bonding) behaviour of newborn albino rats, Bull. Exp. Biol. Med., 2011, vol. 150, no. 3, pp. 281–285.CrossRefPubMedGoogle Scholar
  20. 20.
    Papaioannou, A., Dafni, U., Alikaridis, F., Bolaris, S., and Stylianopoulou, F., Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain, Neuroscience, 2002, vol. 114, no. 1, pp. 195–206.CrossRefPubMedGoogle Scholar
  21. 21.
    Miyagi, J., Oshibuchi, H., Kasai, A., Inada, K., and Ishigooka, J., Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdale of methamphetamine-sensitized rats, Eur. J. Pharmacol., 2014, vol. 730, pp. 2014–730.Google Scholar
  22. 22.
    Lee, S., Jeong, J., Park, Yu., Kwak, Y., Lee, S.A., Lee, H., Son, H., and Park, S.K., Valproate alters dopamine signaling in association with induction of Par-4 protein expression, PLoS One, 2012, vol. 7, no. 9, pp. 1–8.Google Scholar
  23. 23.
    Carlson, G.C., Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders, Pharmacol. Biochem. Behav., 2012, vol. 100, no. 4, pp. 850–854.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Spooren, W., Lindemann, L., Ghosh, A., and Santarelli, L., Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders, Trends Pharmacol. Sci., 2012, vol. 33, no. 12, pp. 669–684.CrossRefPubMedGoogle Scholar
  25. 25.
    Oyabu, A., Narita, M., and Tashiro, Y., The effects of prenatal exposure to valproic acid on the initial development of serotonergic neurons, Int. J. Dev. Neurosci., 2013, vol. 31, no. 3, pp. 202–208.CrossRefPubMedGoogle Scholar
  26. 26.
    Kinast, K., Peeters, D., Kolk, S.M., Schubert, D., and Homberg, J.R., Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior, Front. Cell. Neurosci., 2013, vol. 7, no. 72, pp. 1–17.Google Scholar
  27. 27.
    Khacheva, K.K., Gedzun, V.R., Rogozinskaya, E.Ya., and Tanaeva, K.K., The role of ß-casomorphin-7 in the correction of maternal behavior in rats caused by prenatal exposure to sodium valproate, in Tezisy dokladov Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh “Lomonosov-2014” (Abstr. “Lomonosov-2014” Int. Sci. Conf. of Students and Young Scientists), Moscow: MAKS Press, 2014, p. 331.Google Scholar
  28. 28.
    Kirino, E., Efficacy and tolerability of pharmacotherapy options for the treatment of irritability in autistic children, Clin. Med. Insights Pediatr., 2014, vol. 8, pp. 2014–8.Google Scholar
  29. 29.
    Almeida, L.E., Roby, C.D., and Krueger, B.K., Increased BDNF expression in fetal brain in the valproic acid model of autism, Mol. Cell. Neurosci., 2014, vol. 59, pp. 2014–59.CrossRefGoogle Scholar
  30. 30.
    Dolotov, O.V., Karpenko, E.A., Inozemtseva, L.S., Seredenina, T.S., Levitskaya, N.G., Rozyczka, J., Dubynina, E.V., Novosadova, E.V., Andreeva, L.A., Alfeeva, L.Yu., Kamensky, A.A., Grivennikov, I.A., Myasoedov, N.F., and Engele, J., Semax, an analog of ACTH(4-10) with cognitive effects, regulated BDNF and trkb expression in the rat hippocampus, Brain Res., 2006, vol. 1117, no. 1, pp. 54–60.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. V. Malyshev
    • 1
  • K. R. Abbasova
    • 1
  • O. A. Averina
    • 2
  • L. N. Solovieva
    • 1
  • V. R. Gedzun
    • 1
  • M. V. Gulyaev
    • 3
  • V. A. Dubynin
    • 1
  1. 1.Department of BiologyMoscow State UniversityMoscowRussia
  2. 2.Experimental Vivarium Complex of Research Institute of MitoengineeringMoscow State UniversityMoscowRussia
  3. 3.Center for Magnetic Tomography and SpectroscopyMoscow State UniversityMoscowRussia

Personalised recommendations