Study of direct repeats in micro evolution of plant mitochondria and plastids based on protein clustering

  • O. A. Zverkov
  • L. Y. Rusin
  • A. V. Seliverstov
  • V. A. Lyubetsky


The study focuses on insertions of perfect direct repeats of words of arbitrary length in plastomes and mitochondriomes. The approach is exemplified using seed plants. Plastomes of close species were analyzed to further develop and refine published evidence for the evolution of non-coding DNA. The results suggest that perfect repeats are common elementary events resulting from replication errors—duplication of DNA. The role of such duplications in the evolution of the plastome is discussed.


inserts of perfect direct repeats plastids mitochondria seed plants microevolution of non-coding regions of DNA clustering of plastid proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R., REPuter: The Manifold Applications of Repeat Analysis on a Genomic Scale, Nucleic Acids Res., 2001, vol. 29, pp. 4633–4642.PubMedCrossRefGoogle Scholar
  2. 2.
    Yang, M. Xiaowei, Zhang X., et al., The Complete Chloroplast Genome Sequence of Date Palm (Phoenix dactylifera L.), PLoS ONE, 2010, vol. 5, no. 9, p. E12762.PubMedCrossRefGoogle Scholar
  3. 3.
    Greiner, S., Wang, X., Rauwolf, U., Silber, M.V., Mayer, K., Meurer, J., Haberer, G., and Herrmann, R.G., The Complete Nucleotide Sequences of the Five Genetically Distinct Plastid Genomes of Oenothera, Subsection Oenothera: I. Sequence Evaluation and Plastome Evolution, Nucleic Acids Res., 2008, vol. 36, no. 7, pp. 2366–2378.PubMedCrossRefGoogle Scholar
  4. 4.
    Ogihara, Y., Terachi, T., and Sasakuma, T., Intramolecular Recombination of Chloroplast Genome Mediated by Short Direct-Repeat Sequences in Wheat Species, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, no. 22, pp. 8573–8577.PubMedCrossRefGoogle Scholar
  5. 5.
    Cai, Z., Guisinger, M., Kim, H.G., Ruck, E., Blazier, J.C., McMurtry, V., Kuehl, J.V., Boore, J., and Jansen, R.K., Extensive Reorganization of the Plastid Genome of Trifolium subterraneum (Fabaceae) Is Associated with Numerous Repeated Sequences and Novel DNA Insertions, J. Mol. Evol., 2008, vol. 67, no. 6, pp. 696–704.PubMedCrossRefGoogle Scholar
  6. 6.
    Timme, R.E., Kuehl, J.V., Boore, J.L., and Jansen, R.K., A Comparative Analysis of the Lactuca and Helianthus (Asteraceae) Plastid Genomes: Identification of Divergent Regions and Categorization of Shared Repeats, Am. J. Bot., 2007, vol. 94, no. 3, pp. 302–312.PubMedCrossRefGoogle Scholar
  7. 7.
    Moore, M.J., Hassan, N., Gitzendanner, M.A., Bruenn, R.A., Croley, M., Vandeventer, A., Horn, J.W., Dhingra, A., Brockington, S.F., Latvis, M., Ramdial, J., Alexandre, R., Piedrahita, A., Xi, Z., Davis, C.C., Soltis, P.S., and Soltis, D.E., Phylogenetic Analysis of the Plastid Inverted Repeat for 244 Species: Insights into Deeper-Level Angiosperm Relationships from a Long, Slowly Evolving Sequence Region, Int. J. Plant Sci., 2011, vol. 172, no. 4, pp. 541–558.CrossRefGoogle Scholar
  8. 8.
    Honma, Y., Yoshida, Y., Terachi, T., Toriyama, K., Mikami, T., and Kubo, T., Polymorphic Minisatellites in the Mitochondrial DNAs of Oryza and Brassica, Curr. Genet., 2011, vol. 57, no. 4, pp. 261–270.PubMedCrossRefGoogle Scholar
  9. 9.
    Borsch, T. and Quandt, D., Mutational Dynamics and Phylogenetic Utility of Noncoding Chloroplast DNA, Plant Syst. Evol., 2009, vol. 282, pp. 169–199.CrossRefGoogle Scholar
  10. 10.
    Kelchner, S.A., The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics, Ann. Missouri Botanical Garden, 2000, vol. 87, pp. 482–498.CrossRefGoogle Scholar
  11. 11.
    Ingvarsson, P.K., Ribstein, S., and Taylor, D.R., Molecular Evolution of Insertions and Deletion in the Chloroplast Genome of Silene, Mol. Biol. Evol., 2003, vol. 20, no. 11, pp. 1737–1740.PubMedCrossRefGoogle Scholar
  12. 12.
    Official Website of the Laboratory of the Institute for Information Transmission Problems. (25.08.2011).
  13. 13.
    Edgar, R.C., MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797.PubMedCrossRefGoogle Scholar
  14. 14.
    Official Website of the Laboratory of the Institute for Information Transmission Problems. (25.08.2011).
  15. 15.
    Zverkov, O.A., Seliverstov, A.V., and Lyubetskii, V.A., Plastid-Encoded Protein Families Specific for Narrow Taxonomic Groups of Algae and Protozoa, Mol. Biol., 2012, vol. 46, no. 5, pp. 717–726.CrossRefGoogle Scholar
  16. 16.
    Seliverstov, A.V. and Lyubetskii, V.A., Direct Repeats in Noncoding Regions of Chloroplasts in Seed Plants, in Tr. 52-i Nauch. Konf. Moskovskogo Fiziko-Tekhnicheskogo Universiteta (Proc. 52nd Sci. Conf. Moscow Physico-Technical University), 2009, vol. 1, no. 1, pp. 116–117.Google Scholar
  17. 17.
    Zverkov, O.A., Rusin, L.Yu., Seliverstov, A.V., and Lyubetskii, V.A., Insertions of Direct Repeats in the Microevolution of Plastids and Mitochondria of Seed Plants, Inform. Prots., 2012, vol. 12, no. 3, pp. 191–197.Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • O. A. Zverkov
    • 1
  • L. Y. Rusin
    • 2
  • A. V. Seliverstov
    • 1
  • V. A. Lyubetsky
    • 1
  1. 1.Institute for Information Transmission Problems (Kharkevich Institute)Russian Academy of SciencesMoscowRussia
  2. 2.Department of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations