Influence of interionic interactions on functional state and blocker binding of voltage-gated potassium channels

  • K. V. Shaitan
  • O. S. Sokolova
  • A. K. Shaitan
  • M. A. Kasimova
  • V. N. Novoseletskii
  • M. P. Kirpichnikov


A mechanism of ion conduction of a voltage-gated potassium channel KcsA was investigated in full-atomic approximation at a trajectory length of 100 ns using the Lomonosov supercomputer. Methods of molecular dynamics were employed. A structure of the KcsA channel in the open state obtained by X-ray structure analysis (PDB ID 3fb7) was used. Free energy profiles of the KcsA pore occupied with either one or three potassium ions were calculated. It was shown that, under physiological conditions, ions pass through the channel pore cooperatively and the mechanism most probably includes three ions permeating in concert. Interactions of the mammalian voltage-gated channel Kv1.2 with neurotoxin were investigated. It was demonstrated that the effect of interionic interactions on binding of a blocker is rather insufficient.


voltage-gated potassium channels neurotoxin molecular dynamics interionic interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molecular Dynamics Simulations of Potassium Channels, Centr. Eur. J. Chem., 2007, vol. 5, pp. 635–671.Google Scholar
  2. 2.
    Jensen, M., Borhani, D., Lindorff-Larsen, K., Maragakis, P., Jogini, V., Eastwood, M., Dror, R., and Shaw, D., Principles of Conduction and Hydrophobic Gating in K+ Channels, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 5833–5838.PubMedCrossRefGoogle Scholar
  3. 3.
    Berneche, S. and Roux, B., Energetics of Ion Conduction through the K+ Channel, Nature, 2001, vol. 414, pp. 73–77.PubMedCrossRefGoogle Scholar
  4. 4.
    Khalili-Araghi, F., Tajkhorshid, E., and Schulten, K., Dynamics of K+ Ion Conduction through Kvl. 2, Biophys. J., 2006, vol. 91, pp. L72–L74.PubMedCrossRefGoogle Scholar
  5. 5.
    Sokolova, O.S., Shaitan, K.V., Grizel’, A.V., Popinako, A.V., Karlova, M.G., and Kirpichnikov, M.P., Three-Dimensional Structure of Human VoltageGated Ion Channel Kv10.2 Studied by Electron Microscopy of Macromolecules and Molecular Modeling, Russ. J. Bioorg. Chem., 2012, vol. 38, no. 2, pp. 152–158.CrossRefGoogle Scholar
  6. 6.
    Boiteux, C., Kraszewski, S., Ramseyer, C., Girarder, C., Ion Conductance Vs. Pore Gating and Selectivity in KcsA Channel: Modeling Achievements and Perspectives, J. Mol. Mod., 2007, vol. 13, pp. 699–713.CrossRefGoogle Scholar
  7. 7.
    Cuello, L., Jogini, V., Cortes, M., and Perozo, E., Structural Mechanism of C-Type Inactivation in K+ Channels, Nature, 2010, vol. 466, pp. 203–208.PubMedCrossRefGoogle Scholar
  8. 8.
    Smart, O., Neduvelil, J., Wang, X., and Sansom, M., HOLE: A Program for the Analysis of the Pore Dimensions of Ion Channel Structural Models, J. Mol. Graphics, 1996, vol. 14, pp. 354–360.CrossRefGoogle Scholar
  9. 9.
    Duan, Y., Wu, C., Chowdhury, S., Lee, M., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., and Kollman, P., A PointCharge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations, J. Comput. Chem., 2003, vol. 24, pp. 1999–2012.PubMedCrossRefGoogle Scholar
  10. 10.
    Miloshevsky, G. and Jordan, P., Conformational Changes in the Selectivity Filter of the Open-State KcsA Channel: An Energy Minimization Study, Biophys. J., 2008, vol. 95, pp. 3239–3251.PubMedCrossRefGoogle Scholar
  11. 11.
    Berger, O., Edholm, O., and Jahnig, F., Molecular Dynamics Simulations of a Fluid Bilayer of Dipalmitoylphosphatidylcholine at Full Hydration, Constant Pressure, and Constant Temperature, Biophys. J., 1997, vol. 72, pp. 2002–2013.PubMedCrossRefGoogle Scholar
  12. 12.
    Wolf, M.G., Hoefling, M., Aponte-Santamaia, C., Grubmuller, H., and Groenhof, G., G-membed: Efficient Insertion of a Membrane Protein into an Equilibrated Lipid Bilayer with Minimal Perturbation, J. Comput. Chem., 2010, vol. 31, pp. 2169–2174.PubMedCrossRefGoogle Scholar
  13. 13.
    Case, D., Gohlke, K., Luo, R., Merz, K., Onufriev, A., Simmerling, C., and Woods, R., The Amber Biomolecular Simulation Programs, J. Comput. Chem., 2005, vol. 26, pp. 1668–1688.PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kale, L., and Schulten, K., Scalable Molecular Dynamics with NAMD, J. Comput. Chem., 2005, vol. 26, pp. 1781–1802.PubMedCrossRefGoogle Scholar
  15. 15.
    Karlova, M.G., Piscshalnikova, A.V., Ramonova, A.A., Moisenovich, M.M., Sokolova, O.S., and Shaitan, K.V., In vitro Fluorescence Assay to Study the Folding of Kv Ion Channels, Biophysics (Moscow), 2011, vol. 56, no. 2, pp. 272–279.Google Scholar
  16. 16.
    Long, S.B., Campbell, E.B., and Mackinnon, R., Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel, Science, 2005, vol. 309, pp. 897–903.PubMedCrossRefGoogle Scholar
  17. 17.
    Krezel, A.M., Hidalgo, P., MacKinnon, R., and Wagner, G., Solution Structure of the Potassium Channel Inhibitor Agitoxin 2: Caliper for Probing Channel Geometry, Protein Sci., 1995, vol. 4, pp. 1478–1489.PubMedCrossRefGoogle Scholar
  18. 18.
    Maestro, version 9.5, Schrödinger L.L.C., New York, 2007. http://www.schrodinger.corr
  19. 19.
    Eriksson, M.A. and Roux, B., Modeling the Structure of Agitoxin in Complex with the Shaker K+ Channel: A Computational Approach Based on Experimental Distance Restraints Extracted from Thermodynamic Mutant Cycles, Biophys. J., 2002, vol. 83, no. 5, pp. 2595–609.PubMedCrossRefGoogle Scholar
  20. 20.
    Tieleman, D.P., Sansom, M.S.P., and Berendsen, H.J., Alamethicin Helices in a Bilayer and in Solution: Molecular Dynamics Simulations, Biophys. J., 1999, vol. 76, p. 40.PubMedCrossRefGoogle Scholar
  21. 21.
    Humphrey, W., Dalke, A., and Schulten, K., VMD: Visual Molecular Dynamics, J. Mol. Graphics, 1996, vol. 14, pp. 33–38.CrossRefGoogle Scholar
  22. 22.
    Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E., Jensen, J.H., Klebe, G., and Baker, N.A., PDB2PQR: Expanding and Upgrading Automated Preparation of Biomolecular Structures for Molecular Simulations, Nucleic Acids Res., 2007, vol. 35, pp. W522–W525.PubMedCrossRefGoogle Scholar
  23. 23.
    Chakrapani, S., Cordero-Morales, J., and Perozo, E., A Quantitative Description of KcsA Gating II: Single-Channel Currents, J. Gen. Physiol., 2007, vol. 130, pp. 479–496.PubMedCrossRefGoogle Scholar
  24. 24.
    LeMasurier, M., Hegittbotham, L., and Miller, C., Kcsa. It’s a Potassium Channel, J. Gen. Physiol., 2001, vol. 118, pp. 303–314.PubMedCrossRefGoogle Scholar
  25. 25.
    Grottesi, A. and Sansom, M.S., Molecular Dynamics Simulations of a K+ Channel Blocker: Tcl Toxin from Tityus cambridgei, FEBS Lett., 2003, vol. 535, nos. 1–3, pp. 29–33.PubMedCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • K. V. Shaitan
    • 1
  • O. S. Sokolova
    • 1
  • A. K. Shaitan
    • 1
  • M. A. Kasimova
    • 1
  • V. N. Novoseletskii
    • 1
  • M. P. Kirpichnikov
    • 1
  1. 1.Department of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations