Moscow University Biological Sciences Bulletin

, Volume 65, Issue 4, pp 167–169 | Cite as

New insight into the phylogeny of Mesozoa: Evidence from the 18S and 28S rRNA genes

  • N. B. Petrov
  • V. V. Aleshin
  • A. N. Pegova
  • M. V. Ofitserov
  • G. S. Slyusarev


The phylogenetic relationships of two Mesozoa groups were studied by the comparative analysis of complete sequences of 18S and 28S rRNA. Two groups of Mesozoa were found to form a statistically supported clade in phylogenetic trees. The results of the analysis placed Mesozoa in the Spiralia group of Lophotrochozoa and showed the tendency of Mesozoa to converge with one of the Annelida groups.


18S and 28S rRNA genes Mesozoa Orthonectida Dicyemida phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pawlowski, J. et al., Origin of the Mesozoa Inferred from 18S rRNA Gene Sequences, Mol. Biol. Evol., 1996, vol. 13, no. 8, pp. 1128–1132.PubMedGoogle Scholar
  2. 2.
    Hanelt, B. et al., The Phylogenetic Position of Rhopalura ophiocomae (Orthonectida) Based on 18S Ribosomal DNA Sequence Analysis, Mol. Biol. Evol., 1996, vol. 13, no. 9, pp. 1187–1191.PubMedGoogle Scholar
  3. 3.
    Kobayashi, M. et al., Dicyemids Are Higher Animals, Nature, 1999, vol. 401, p. 762.CrossRefPubMedGoogle Scholar
  4. 4.
    Petrov, N.B. et al., Combined 18S and 28S rRNA Gene Sequences Show That Gastrotricha and Dicyemida are Related to Flatworms Whereas Orthonectida Are Related to Annelids, in Vychislitel’naya filogenetika i genosistematika “VFGS 2007” (Computational Phylogenetics and Genosystematics “VFGS 2007”), Moscow, 2007, pp. 245–248.Google Scholar
  5. 5.
    Slyusarev, G.S., Type Orthonectida: Structure, Biology, and Taxonomic Position among Metazoans, Zh. Obshch. Biol., 2008, vol. 69, no. 6, pp. 403–427.Google Scholar
  6. 6.
    Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuch, R., Horn, G.T., Mullis, K.B., and Erlich, H.A., Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase, Science, 1988, vol. 239, pp. 487–491.CrossRefPubMedGoogle Scholar
  7. 7.
    Medlin, L., Elwood, H.J., Stickel, S., and Sogin, M.L., The Characterization of Enzymatically Amplified Eukaryotic 16S-Like rRNA-Coding Regions, Gene, 1988, vol. 71, pp. 491–499.CrossRefPubMedGoogle Scholar
  8. 8.
    van der Auwera, G., Chapelle, S., and de Wachter, R., Structure of the Large Ribosomal Subunit RNA of Phytophtora megasperma, and Phylogeny of the Oomycetes, FEBS Lett., 1994, vol. 338, pp. 133–136.CrossRefPubMedGoogle Scholar
  9. 9.
    Huelsenbeck, J.P. and Ronquist, F., MRBAYES: Bayesian Inference of Phylogenetic Trees, Bioinformatics, 2001, vol. 17, no. 8, pp. 1572–1574.CrossRefGoogle Scholar
  10. 10.
    Alfaro, M.E., Zoller, S., and Lutzoni, F., Bayes or Bootstrap? A Simulation Study Comparing the Performance of Bayesian Markov Chain Monte Carlo Sampling and Bootstrapping in Assessing Phylogenetic Confidence, Mol. Biol. Evol., 2003, vol. 20, no. 2, pp. 255–266.CrossRefPubMedGoogle Scholar
  11. 11.
    Philippe, H. and Germot, A., Phylogeny of Eukaryotes Based on Ribosomal RNA: Long-Branch Attraction and Models of Sequence Evolution, Mol. Biol. Evol., 2000, vol. 17, pp. 830–834.PubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • N. B. Petrov
    • 1
  • V. V. Aleshin
    • 1
  • A. N. Pegova
    • 2
  • M. V. Ofitserov
    • 3
  • G. S. Slyusarev
    • 4
  1. 1.Research Institute of Physical and Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.International Biotechnology CenterMoscow State UniversityMoscowRussia
  3. 3.State Scientific Center, Russian Research Institute of Irrigative PiscicultureRussian Academy of Agricultural SciencesMoscowRussia
  4. 4.Invertebrate Zoology DepartmentSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations