Advertisement

Cytology and Genetics

, Volume 53, Issue 2, pp 132–142 | Cite as

CdS Quantum Dots Obtained by “Green” Synthesis: Comparative Analysis of Toxicity and Effects on the Proliferative and Adhesive Activity of Human Cells

  • L. V. GarmanchukEmail author
  • M. N. BorovayaEmail author
  • A. O. Nehelia
  • M. Inomistova
  • N. M. KhranovskaEmail author
  • G. M. TolstanovaEmail author
  • Ya. B. Blume
  • A. I. YemetsEmail author
Article
  • 3 Downloads

Abstract

A novel alternative approach for extracellular synthesis of CdS quantum dots using Escherichia coli bacteria, the fungus Pleurotus ostreatus, and the plant Linaria maroccana as biological matrices was previously developed. The nanoparticles obtained had stable luminescent properties and diameters of 2–10 nm. This paper presents the results of MTT assay- and flow cytometry-based analysis of cytotoxic/cytostatic effects, proliferative activity, and the ability of the CdS quantum dots synthesized to adhere to HeLa cells (human cervical cancer), malignized human T- and B-lymphocytes, and tumor cells of the AGS line (stomach cancer). The toxicity of the CdS quantum dots obtained by the “green” synthesis method was lower than that of inorganic cadmium sulfide, and this makes the quantum dots attractive candidates for a new type of nontoxic luminescent probes for bioimaging in cytological studies.

Keywords:

quantum dots cadmium sulfide cytotoxicity tumor cells proliferative activity adhesive ability 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Zhao, M.X. and Zeng, E.Z., Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging, Nanoscale Res. Lett., 2015, vol. 10, pp. 1–9.  https://doi.org/10.1186/s11671-015-0873-8 CrossRefGoogle Scholar
  2. 2.
    Rosentha, S.J., Chang, J.C., Kovtun, O., McBride, J.R., and Tomlinson, I.D., Biocompatible quantum dots for biological applications, Chem. Biol., 2011, vol. 18, no. 1, pp. 10–24.  https://doi.org/10.1016/j.chembiol.2010.11.013 CrossRefGoogle Scholar
  3. 3.
    Medintz, I.L., Mattoussi, H., and Clapp, A.R., Potential clinical applications of quantum dots, Int. J. Nanomed., 2008, vol. 3, no. 2, pp. 151–167.Google Scholar
  4. 4.
    Hoshino, A., Fujioka, K., Oku, T., Nakamura, S., Suga, M., Yamaguchi, Y., Suzuki, K., Yasuhara, M., and Yamamoto, K., Quantum dots targeted to the assigned organelle in living cells, Microbiol. Immunol., 2004, vol. 48, no. 12, pp. 985–994.CrossRefGoogle Scholar
  5. 5.
    Tamašauskaitė-Tamašiūnaitė, L., Grincienė, G., Šimkūnaitė-Stanynienė, B., Naruškevicius, L., Pakštas, V., Selskis, A., and Norkus, E., Preparation of CdS nanoparticles by microwave-assisted synthesis, Chemija, 2015, vol. 26, no. 3, pp. 193–197.Google Scholar
  6. 6.
    Wang, G.Z., Chen, W., Liang, C.H., Wang, Y.W., Meng, G.W., and Zhang, L.D., Preparation and characterization of CdS nanoparticles by ultrasonic irradiation, Inorg. Chem. Commun., 2001, vol. 4, no. 4, pp. 208–210.CrossRefGoogle Scholar
  7. 7.
    Marchiol, L., Synthesis of metal nanoparticles in living plants, Ital. J. Agron., 2012, vol. 7, no. 3, pp. 274–282.  https://doi.org/10.4081/ija.2012.e37
  8. 8.
    Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A., Blume, Y.B., and Yemets, A.I., Biosynthesis of luminescent CdS quantum dots using plant hairy root culture, Nanocsale Res. Lett., 2014, vol. 9, pp. 1–7.  https://doi.org/10.1186/1556-276X-9-686 CrossRefGoogle Scholar
  9. 9.
    Borovaya, M.N., Naumenko, A.P., Yemets, A.I., and Blume, Y.B., Stability of the CdS quantum dots, synthesized by the bacteria Escherichia coli, Rep. Natl. Acad. Sci. Ukraine, 2014, vol. 7, pp. 145–151.CrossRefGoogle Scholar
  10. 10.
    Borovaya, M.N., Naumenko, A.P., Pirko, Y.V., Krupodorova, T.A., Yemets, A.I., and Blume, Y.B., Production of CdS quantum dots with the use of the fungus Pleurotus ostreatus, Rep. Natl. Acad. Sci. Ukraine, 2014, vol. 2, pp. 153–159.CrossRefGoogle Scholar
  11. 11.
    Borovaya, M., Pirko, Y., Krupodorova, T., Naumenko, A., Blume, Y., and Yemets, A., Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm, Biotechnol. Biotechn. Equipm., 2015, vol. 29, no. 6, pp. 1156–1163.  https://doi.org/10.1080/13102818.2015.1064264 CrossRefGoogle Scholar
  12. 12.
    Borovaya, M.N., Burlaka, O.M., Naumenko, A.P., Blume, Ya.B., and Yemets, A.I., Extracellular synthesis of luminescent CdS quantum dots using plant cell culture, Nanoscale Res. Lett., 2016, vol. 11, no. 1, pp. 1–8.  https://doi.org/10.1186/s11671-016-1314-z CrossRefGoogle Scholar
  13. 13.
    Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays, J. Immun. Meth., vol. 65, nos. 1–2, pp. 55–63.Google Scholar
  14. 14.
    McDonald, J.H., Handbook of Biological Statistics, Baltimore, Maryland: Sparky House Publishing, 2008.Google Scholar
  15. 15.
    Kong, B., Seog, J.H., Graham, L.M., and Lee, S.B., Experimental considerations on the cytotoxicity of nanoparticles, Nanomedicine, 2011, vol. 6, pp. 929–941.  https://doi.org/10.2217/nnm.11.77 CrossRefGoogle Scholar
  16. 16.
    Bendas, G. and Borsig, L., Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins, Int. J. Cell Biol., 2012, vol. 2012, p. 10.  https://doi.org/10.1155/2012/676731 CrossRefGoogle Scholar
  17. 17.
    Goo, S., Choi, Y.J., Lee, Y., Lee, S., and Chung, H.W., Selective effects of curcumin on CdSe/ZnS quantum-dot-induced phototoxicity using UVA irradiation in normal human lymphocytes and leukemia cells, Toxicol. Res., 2013, vol. 29, no. 1, pp. 35–42.  https://doi.org/10.5487/TR.2013.29.1.035 CrossRefGoogle Scholar
  18. 18.
    Ober-Blobaum, J.L., Engelhardt, G., Hebel, S., Rink, L., and Haase, H., Cadmium ions promote monocytic differentiation of humanleukemia HL-60 cells treated with 1a,25-dihydroxyvitamin D3, Biol. Chem., 2010, vol. 391, no. 11, pp. 1295–303.  https://doi.org/10.1515/BC.2010.135 CrossRefGoogle Scholar
  19. 19.
    Zhou, J., Yang, Y., and Zhang, C., Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application, Chem. Rev., 2015, vol. 115, no. 21, pp. 11669–11717.  https://doi.org/10.1021/acs.chemrev.5b00049 CrossRefGoogle Scholar
  20. 20.
    Katsumiti, A., Gilliland, D., Arostegui, I., and Cajaraville, M.P., Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis, Aquat. Toxicol., 2014, vol. 153, pp. 39–52.  https://doi.org/10.1016/j.aquatox.2014.02.003 CrossRefGoogle Scholar
  21. 21.
    Munari, M., Sturve, J., Frenzilli, G., Sandersd, M.B., Brunelli, A., Marcomini, A., Nigroc, M., and Lyons, B.P., Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2), Mutat. Res. Gen. Toxicol. Environ. Mutagen., 2014, vols., 775–776, pp. 89–93.  https://doi.org/10.1016/j.mrgentox.2014.09.003 CrossRefGoogle Scholar
  22. 22.
    Cho, S.J., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., and Winnik, F.M., Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir, 2007, vol. 23, no. 4, pp. 1974–1980.  https://doi.org/10.1021/la060093j CrossRefGoogle Scholar
  23. 23.
    Li, K.G., Chen, J.T., Bai, S.S., Wen, X., Song, S.Y., Yu, Q., Li, J., and Wang, Y.Q., Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodifiedcadmium sulphide quantum dots, Toxicol. In Vitro, 2009, vol. 23, no. 6, pp. 1007–1013.  https://doi.org/10.1016/j.tiv.2009.06.020 CrossRefGoogle Scholar
  24. 24.
    Hossain, Sk.T. and Mukherjee, S.K., Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells, J. Hazard. Mater., 2013, vol. 260, pp. 1073–1082.  https://doi.org/10.1016/j.jhazmat.2013.07.005 CrossRefGoogle Scholar
  25. 25.
    Galeone, A., Vecchio, G., Malvindi, M.A., Brunetti, V., Cingolani, R., and Pompa, P.P., In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity, Nanoscale, 2012, vol. 4, no. 2, pp. 6401–6407.  https://doi.org/10.1039/c2nr31826a CrossRefGoogle Scholar
  26. 26.
    Protsenko, O.V., Dudka, O.A., Kozeretskaya, I.A., Inomystova, M.V., Borovaya, M.N., Pirko, Ya.V., Tolstanova, A.N., Ostapchenko, L.I., and Yemets, A.I., Estimation of toxicity and genotoxicity of CdS quantum dots synthesized with the help of biological matrices, Proc. Natl. Acad. Sci. Ukraine, 2016, vol. 4, pp. 111–117.Google Scholar
  27. 27.
    Borovaya, M.N., Burlaka, O.M., Yemets, A.I., and Blume, Ya.B., Biosynthesis of Quantum Dots and Their Potential Applications in Biology and Biomedicine, Springer International Publishing Switzerland, 2015, vol. 167, no. 24, pp. 339–362.  https://doi.org/10.1007/978-3-319-18543-9_24 Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Biology and Medicine Institute Science Educational Center of Taras Shevchenko National University of KyivKyivUkraine
  3. 3.National Cancer InstituteKyivUkraine

Personalised recommendations