Advertisement

Cytology and Genetics

, Volume 52, Issue 6, pp 395–399 | Cite as

Accumulation of Indolyl-3-Acetic and Abscisic Acids by “Hairy” Roots of Artemisia vulgaris

  • I. V. Kosakivska
  • L. V. Voytenko
  • K. O. Drobot
  • N. A. Matvieieva
Article
  • 14 Downloads

Abstract

High-performance liquid chromatography–mass spectrometry has been used to study the character of the accumulation and balance of endogenous indolyl-3-acetic (IAA) and abscisic (ABA) acids in the “hairy” roots of Artemisia vulgaris obtained by transformation with Agrobacterium rhizogenes agropine strain A4. The free IAA content was significantly higher than the level of the conjugated form of the hormone. The highest amount of the active IAA form (554.4 ± 27.7 ng/g fresh weight) was detected in line no. 2. The free form of ABA predominated in the roots of control samples, where its level was significantly higher than in the transformed lines. The “hairy” roots accumulated a conjugated form of ABA, and the highest content of this compound amounted to 459.6 ± 23.0 ng/g of fresh weight (in line no. 4). The architecture of the transformed roots was marked by significant branching and lateral root formation; active accumulation of biomass was detected. The results obtained demonstrate changes in the endogenous phytohormone balance in the “hairy” A. vulgaris roots, namely, a trend to predomination of the free IAA form and a significant decrease of the ABA content.

Keywords:

Artemisia vulgaris indolyl 3-acetic acid abscisic acid “hairy” roots 

Notes

REFERENCES

  1. 1.
    Munné-Bosch, S. and Müller, M., Hormonal cross-talk in plant development and stress responses, Front. Plant Sci., 2013, vol. 4, pp. 5–6. doi 10.3389/ fpls.2013.00529CrossRefGoogle Scholar
  2. 2.
    Kolupaev, Yu.Ye. and Kosakivska, I.V., The role of signal systems and phytohormones in realization of plant stress response, Ukr. Bot. J., 2008, vol. 65, no. 3, pp. 418–430.Google Scholar
  3. 3.
    Park, Y.G., Mun, B.G., Kang, S.M., Hussain, A., Shahzad, R., Seo, C.W., Kim, A.Y., Lee, S.U., Oh, K.Y., Lee, D.Y., Lee, I.J., and Yun, B.W., Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones, PLoS One, 2017, vol. 12, no. 3. e0173203. doi 10.1371/journal.pone.0173203CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Enders, T.A. and Strader, L.C., Auxin activity: past, present, and future, Am. J. Bot., 2015, vol. 102, no. 2, pp. 180–196. doi 10.3732/ajb.1400285CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Spiess, G.M., Hausman, A., Yu, P., Cohen, J.D., Rampey, R.A., and Zolman, B.K., Auxin input pathway disruptions are mitigated by changes in auxin biosynthetic gene expression in Arabidopsis, Plant Physiol., 2014, vol. 165, pp. 1092–1104.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Endo, A., Okamoto, M., and Koshiba, T., ABA Biosynthetic and Catabolic Pathways, Dordrecht: Springer Science + Business Media, 2014.Google Scholar
  7. 7.
    Rowe, J.H., Topping, J.F., Liu, J., and Lindsey, K., Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin, New Phytol., 2016, vol. 211, no. 1, pp. 225–239.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gonzalez, A.A., Agbevenou, K., Herrbach, V., Gough, C., and Bensmihen, S., Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula, Plant Signal. Behav., 2015, vol. 10, no. 1. e977741. doi 10.4161/15592324.2014.977741CrossRefPubMedGoogle Scholar
  9. 9.
    Luo, X., Chen, Z., Gao, J., and Gong, Z., Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis, Plant J., 2014, vol. 79, pp. 44–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Sakata, Y., Komatsu, K., and Takezawa, D., ABA as a universal plant hormone, Progr. Bot., 2014, vol. 75, pp. 57–96.Google Scholar
  11. 11.
    Drobot, K.O., Ostapchuk, A.M., Duplij, V.P., and Matvieieva, N.A., Effect of Agrobacterium rhizogenes-mediated transformation on the biologically active compounds content in Artemisia vulgaris L. transgenic roots, Plant Physiol. Genet., 2016, vol. 48, no. 5, pp. 550–555.Google Scholar
  12. 12.
    Sujatha, G., Zdravkovic-Korac, S., Calic, D., Flamini, G., and Ranjitha, KumariB.D., High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Artemisia vulgaris: Hairy root production and essential oil analysis, Industrial Crops Products, 2013, vol. 44, pp. 643–652. org/ doi 10.1016/j.indcrop.2012.09.007Google Scholar
  13. 13.
    Ali, M., Kiani, B.H., Mannan, A., Ismail, T., and Mirza, B., Enhanced production of artemisinin by hairy root cultures of Artemisia dubia, J. Med. Plants Res., 2012, vol. 6, no. 9, pp. 1619–1622. doi 10.5897/JMPR11.1268Google Scholar
  14. 14.
    Sparks, C.A., Doherty, A., and Jones, H.D., Genetic transformation of wheat via Agrobacterium-mediated DNA delivery, Meth. Mol. Biol., 2014, vol. 1099, pp. 235–250. doi 10.1007/978-1-62703-715-0_19CrossRefGoogle Scholar
  15. 15.
    Kleinboelting, N., Huep, G., Appelhagen, I., Viehoever, P., Li, Y., and Weisshaar, B., The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism, Mol. Plant, 2015, vol. 8, no. 11, pp. 1651–1664. https://doi.org/10.1016/j.molp.2015.08.011CrossRefPubMedGoogle Scholar
  16. 16.
    Boiko, G.V., Identification key for the species of the genus Artemisia L. (Asteraceae) of the flora Ukraine, Ukr. Bot. J., 2013, vol. 70, no. 4, pp. 479–481.CrossRefGoogle Scholar
  17. 17.
    Correa-Ferreira, M.L., Verdan, M.H., and Reis Li-vero, F.A., Inulin-type fructan and infusion of Artemisia vulgaris protect the liver against carbon tetrachloride-induced liver injury, Phytomedicine, 2017, vol. 24, pp. 68–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Anwar, F., Ahmad, N., Alkharfy, K.M., and Gilani, A.-ul-H., Mugwort (Artemisia vulgaris) oils, in Essential Oils in Food Preservation, Flavor and Safety, Preedy, V.R., Ed., Elsevier, 2015, 1st ed., pp. 573–579.Google Scholar
  19. 19.
    Lian, G., Li, F., Yin, Y., Chen, L., and Yang, J., Herbal extract of Artemisia vulgaris (mugwort) induces antitumor effects in HCT-15 human colon cancer cells via autophagy induction, cell migration suppression and loss of mitochondrial membrane potential, J. Buon., 2018, vol. 23, no. 1, pp. 73–78.PubMedGoogle Scholar
  20. 20.
    Urban, J., Kokoska, L., Langrova, I., and Matejkova, J., In vitro anthelmintic effects of medicinal plants used in Czech Republic, Pharm. Biol., 2008, vol. 46, nos. 10–11, pp. 808–813.CrossRefGoogle Scholar
  21. 21.
    Bamoniri, A., Mirjalili, B.B.F., Mazoochi, A., and Batooli, H., Chemical composition of Artemisia vulgaris L. from Kashan area isolated by nano scale injection, Iran. J. Org. Chem., 2010, vol. 2, no. 4, pp. 533–536.Google Scholar
  22. 22.
    Judzentiene, A. and Buzelyte, J., Chemical composition of essential oils of Artemisia vulgaris L. (mugwort) from North Lithuania, Chemija, 2006, vol. 17, no. 1, pp. 12–15.Google Scholar
  23. 23.
    Hristova, L., Damyanova, E., Doichinova, Z., and Kapchina-Toteva, V., Effect of 6-benzylaminopurine on micropropagation of Artemisia chamaemelifolia Vill. (Asteraceae), Bulg. J. Agricult. Sci., 2013, vol. 9, no 2, pp. 57–60.Google Scholar
  24. 24.
    Sujatha, G. and Ranjitha, KumariB.D., Effect of phytohormones on micropropagation of Artemisia vulgaris L., Acta Physiol. Plant., 2007, vol. 29, no. 3, pp. 189–195. doi 10.1007/s11738-006-0023-0CrossRefGoogle Scholar
  25. 25.
    Sujatha, G. and Ranjitha, KumariB.D., Micropropagation, encapsulation and growth of Artemisia vulgaris node explants for germplasm preservation, South African J. Bot., 2008, vol. 74, no. 1, pp. 93–100.CrossRefGoogle Scholar
  26. 26.
    Liu, C.Z., Murch, S.J., El-Demerdash, M., and Saxena, P.K., Regeneration of the Egyptian medicinal plant Artemisia judaica L., Plant Cell Rep., vol. 21, no. 6, pp. 525–530. doi 10.1007/s00299-002-0561-xGoogle Scholar
  27. 27.
    Rasool, R., Bashir, A.G., Kamili, A.N., Akbar, S., and Masood, A., Synergistic effect of auxins and cytokinins on propagation of Artemisia amygdalina (Asteraceae), a critically endangered plant of Kashmir, Pak. J. Bot., 2013, vol. 45, no. 2, pp. 629–634.Google Scholar
  28. 28.
    Zia, M., Riaz-ur-Rehman Chaudhary M.F., Hormonal regulation for callogenesis and organogenesis of Artemisia absinthium L., Afr. J. Biotech., 2007, vol. 6, no. 16, pp. 1874–1878.CrossRefGoogle Scholar
  29. 29.
    Nilsson, O., Moritz, T., Imbault, N., Sandberg, G., and Olsson, O., Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA, Plant Physiol., 1993, vol. 102, no. 2, pp. 363–371.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pavlova, O.A., Matveyeva, T.V., and Lutova, L.A., Rol-genes of Agrobacterium rhizogenes, Ekol. Genet., 2013, vol. 11, no. 1, pp. 59–68.Google Scholar
  31. 31.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assay with tobacco tissue culture, Phys. Plant., 1962, vol. 15, pp. 473–497. org// doi 10.1111/j.1399-3054.1962.tb08052.xGoogle Scholar
  32. 32.
    Kosakivska, I.V., Voytenko, L.V., Likhnyovskiy, R.V., and Ustinova, A.Y., Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aesticum L. seedling, Genet. Plant Physiol., 2014, vol. 4, nos. 3–4, pp. 201–208.Google Scholar
  33. 33.
    Leyser, O., Regulation of shoot branching by auxin, Trends Plant Sci., 2003, vol. 8, pp. 541–545. doi 10.1016/j.tplants.2003.09.008CrossRefPubMedGoogle Scholar
  34. 34.
    Ludwig-Muller, J., Auxin conjugates: their role for plant development and in the evolution of land plants, J. Exp. Bot., 2011, vol. 62, no. 6, pp. 1757–1773. doi 10.1093/jxb/erq412CrossRefPubMedGoogle Scholar
  35. 35.
    Piotrowska, A. and Bajguz, A., Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins and jasmonates, Phytochemistry, 2011, vol. 72, no. 17, pp. 2097–2112. doi 10.1016/j.phytochem.2011.08.012CrossRefPubMedGoogle Scholar
  36. 36.
    Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Benkova, E., Mahonen, A.P., and Helariutta, Y., A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots, Curr. Biol., 2011, vol. 21, no. 11, pp. 917–926. doi 10.1016/j.cub.2011.04.017CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Kholodnyi Institute of Botany, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations