Advertisement

Cytology and Genetics

, Volume 52, Issue 3, pp 198–203 | Cite as

High Prevalence of c.1528G>C Rearrangement in Patients with Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency from Ukraine

  • O. BarvinskaEmail author
  • N. Olkhovych
  • N. Gorovenko
Article

Abstract

During 2011–2016, selective screening of hereditary disorders of amino acid and acylcarnitines metabolism identified six patients with a set of clinical symptoms and biochemical markers, which indicated a high probability of one of the two hereditary disorders of fatty acids β-oxidation associated with complete deficiency of trifunctional protein (TFP) or isolated deficiency of long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD). To differentiate these two inherited disorders, molecular genetic analysis of major missense rearrangement c.1528G>C in the HADHA gene was carried out. This mutation is associated with isolated LCHAD deficiency and the worldwide frequency of its alleles varies from 68 to 95%. As a result of this study, it was shown that this mutation was present in 100% of alleles in patients from Ukraine. Therefore, the diagnosis of isolated LCHAD deficiency was confirmed in these six patients. Thus, the preliminary frequency of isolated LCHAD deficiency in Ukraine is 1: 329968 live births at present, which is 2.1 times lower than the average for Europe.

Keywords

trifunctional protein deficiency isolated LCHAD deficiency HADHA gene missense rearrangement c.1528G>C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tyni, T. and Pihko, H., Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency, Acta Paediatr., 1999, vol. 88, no. 3, pp. 237–245.CrossRefPubMedGoogle Scholar
  2. 2.
    Olpin, S.E., Clark, S., Andresen, B.S., Bischoff, C., Olsen, R.K., Gregersen, N., Chakrapani, A., Downing, M., Manning, N.J., Sharrard, M., Bonham, J.R., Muntoni, F., Turnbull, D.N., and Pourfarzam, M., Biochemical, clinical and molecular findings in LCHAD and general mitochondrial trifunctional protein deficiency, J. Inherit. Metab. Dis., 2005, vol. 28, no. 4, pp. 533–544.CrossRefPubMedGoogle Scholar
  3. 3.
    Boutron, A., Acquaviva, C., Vianey-Saban, C., de Lonlay, P., de Baulny, H.O., Guffon, N., Dobbelaere, D., Feillet, F., Labarthe, F., Lamireau, D., Cano, A., de Villemeur, T.B., Munnich, A., Saudubray, J.M., Rabier, D., Rigal, O., and Brivet, M., Comprehensive cDNA study and quantitative analysis of mutant HADHA and HADHB transcripts in a French cohort of 52 patients with mitochondrial trifunctional protein deficiency, Mol. Genet. Metab., 2011, vol. 103, no. 4, pp. 341–348.CrossRefPubMedGoogle Scholar
  4. 4.
    Sykut-Cegielska, J., Gradowska, W., Piekutowska-Abramczuk, D., Andresen, B.S., Olsen, R.K., Oltarzewski, M., Pronicki, M., Pajdowska, M., Bogdanska, A., Jablonska, E., Radomyska, B., Kusmierska, K., Krajewska-Walasek, M., Gregersen, N., and Pronicka, E., Urgent metabolic service improves survival in longchain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening, J. Inherit. Metab. Dis., 2010, vol. 34, no. 1, pp. 185–195.CrossRefPubMedGoogle Scholar
  5. 5.
    Joost, K., Ounap, K., Zordania, R., Uudelepp, M.-L., Olsen, R.K., Kall, K., Kilk, K., Soomets, U., and Kahre, T., Prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Estonia, JIMD Rep., 2011, vol. 2, pp. 79–85.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ding, J.H., Yang, B.Z., Nada, M.A., and Roe, C.R., Improved detection of the G1528C mutation in LCHAD deficiency, Biochem. Mol. Med., 1996, vol. 58, no. 1, pp. 46–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Wajner, M. and Amaral, F.U., Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies, Biosci. Rep., 2016, vol. 36, e00281.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Spiekerkoetter, U., Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening, J. Inherit. Metab. Dis., 2010, vol. 33, no. 5, pp. 527–532.CrossRefPubMedGoogle Scholar
  9. 9.
    Fletcher, A.L., Pennesi, M.E., Harding, C.O., Weleber, R.G., and Gillingham, M.B., Observations regard-ing retinopathy in mitochondrial trifunctional protein deficiencies, Mol. Genet. Metab., 2012, vol. 106, no. 1, pp. 18–24.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Poorthuis, B.J., Wevers, R.A., Kleijer, W.J., Groener, J.E., de Jong, J.G., van Weely, S., Niezen-Koning, K.E., and van Diggelen, O.P., The frequency of lysosomal storage diseases in the Netherlands, Hum. Genet., 1999, vol. 105, nos. 1–2, pp. 151–156.CrossRefPubMedGoogle Scholar
  11. 11.
    Bo, R., Yamada, K., Kobayashi, H., Jamiyan, P., Hasegawa, Y., Taketani, T., Fukuda, S., Hata, I., Niida, Y., Shigematsu, Y., Iijima, K., and Yamaguchi, S., Clinical and molecular investigation of 14 Japanese patients with complete TFP deficiency: a comparison with Caucasian cases, J. Hum. Genet., 2017, vol. 62, no. 9, pp. 809–814.CrossRefPubMedGoogle Scholar
  12. 12.
    Immonen, T., Turanlahti, M., Paganus, A., Keskinen, P., Tyni, T., and Lapatto, R., Earlier diagnosis and strict diets improve the survival rate and clinical course of longchain 3-hydroxyacyl-CoA dehydrogenase deficiency, Acta Paediatr., 2016, vol. 105, no. 5, pp. 549–554.CrossRefPubMedGoogle Scholar
  13. 13.
    Baydakova, G.V. and Zakharova, E.Y., Long-chain 3-hydroxyacyl-coa dehydrogenase deficiency—the most frequent fatty acid oxidation disorder in selective screening in Russia, J. Inherit. Metab. Dis., 2010, vol. 33, no. 1, p. 63.Google Scholar
  14. 14.
    Piekutowska-Abramczuk, D., Olsen, R.K., Wierzba, J., Popowska, E., Jurkiewicz, D., Ciara, E., O-tarzewski, M., Gradowska, W., Sykut-Cegielska, J., Krajewska-Walasek, M., Andresen, B.S., Gregersen, N., and Pronicka, E., A comprehensive HADHA c.1528G>C frequency study reveals high prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Poland, J. Inherit. Metab. Dis., 2011, vol. 33, suppl. 3, pp. 373–377.Google Scholar
  15. 15.
    Lindner, M., Hoffmann, G.F., and Matern, D., Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting, J. Inherit. Metab. Dis., 2010, vol. 33, no. 5, pp. 521–526.CrossRefPubMedGoogle Scholar
  16. 16.
    Moorthie, S., Cameron, L., Sagoo, G.S., Bonham, J.R., and Burton, H., Systematic review and metaanalysis to estimate the birth prevalence of five inherited metabolic diseases, J. Inherit. Metab. Dis., 2014, vol. 37, no. 6, pp. 889–898.CrossRefPubMedGoogle Scholar
  17. 17.
    Spiekerkoetter, U., Lindner, M., Santer, R., Grotzke, M., Baumgartner, M.R., Boehles, H., Das, A., Haase, C., Hennermann, J.B., Karall, D., de Klerk, H., Knerr, I., Koch, H.G., Plecko, B., Roschinger, W., Schwab, K.O., Scheible, D., Wijburg, F.A., Zschocke, J., Mayatepek, E., and Wendel, U., Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop, J. Inherit. Metab. Dis., 2009, vol. 32, no. 4, pp. 488–497.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Laboratory of Medical Genetics, NSCH OKHMATDYTMinistry of Health of UkraineKyivUkraine
  2. 2.Chair of Medical and Laboratory GeneticsShupyk National Medical Academy of Postgraduate EducationKyivUkraine

Personalised recommendations