Advertisement

Cytology and Genetics

, Volume 51, Issue 5, pp 325–330 | Cite as

Formation of adaptive reactions in Arabidopsis thaliana wild-type and mutant jin1 plants under action of abscisic acid and salt stress

  • T. O. Yastreb
  • Yu. E. Kolupaev
  • A. A. Lugovaya
  • A. P. Dmitriev
Article

Abstract

To elucidate the possible role of the transcription factor (TRF) JIN1/MYC2 in implementation of stress-protective effects of abscisic acid (ABA), the effect of exogenous ABA on the state of stomata and the activity of antioxidant enzymes and proline content under salt stress conditions in Arabidopsis thaliana plants of wild type (Col-0) and jin1 mutants with impaired jasmonate signaling was investigated. Treatment of leaves’ epidermis with ABA (10 or 100 μM) caused the closing of stomata in Col-0 plants but has hardly any influence on stomatal aperture in jin1 mutants. Salt stress (200 mM NaCl exposure for 24 h) caused a reduction of the water content in the plant leaves of both genotypes. Addition of 10 μM ABA into the growing medium contributed to a maintaining of normal hydration in wild-type but not in jin1 plants under salt stress. ABA treatment caused an almost twofold increase in proline content in the leaves of plants of both genotypes under normal conditions. Pretreatment with phytohormone contributed to enhancing the proline content in wild-type plants at salt stress and had a less significant effect on its amount in jin1 plants. Treatment with ABA under physiologically normal conditions increased the catalase activity in wild-type plants. Both genotypes under ABA influence showed increased activity of superoxide dismutase (SOD). Under salt stress conditions, higher activity of SOD, catalase, and guaiacol peroxidase was observed in ABA-treated wild-type plants but not in jin1 mutants. A conclusion about the participation of TRF JIN1/MYC2 in the formation of certain ABA-induced physiological responses of Arabidopsis plants was made.

Keywords

Arabidopsis thaliana abscisic acid transcriptional regulation factor JIN1/MYC2 stomata proline antioxidant enzymes salt resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dombrecht, B., Xue, G.P., Sprague, S.J., Kirke-gaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewe-lam, N., Schenk, P.M., Manners, J.M., and Kazan, K., MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis, Plant Cell, 2007, vol. 19, no. 7, pp. 2225–2245.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guo, J., Pang, Q., Wang, L., Yu, P., Li, N., and Yan, X., Proteomic identification of MYC2-dependent jasmonateregulated proteins in Arabidopsis thaliana, Proteome Sci., 2012, vol. 10, no. 1, p. 57. doi 10.1186/1477-5956-10-57CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S., and Chattopadhyay, S., A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth, Plant Cell, 2005, vol. 17, no. 7, pp. 1953–1966.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Palmieri, M.C., Sell, S., Huang, X., Scherf, M., Werner, T., Durner, J., and Lindermayr, C., Nitric oxideresponsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach, J. Exp. Bot., 2008, vol. 59, no. 2, pp. 177–186.CrossRefPubMedGoogle Scholar
  5. 5.
    Yastreb, T.O., Kolupaev, Yu.E., Shvidenko, N.V., Lugovaya, A.A., and Dmitriev A.P., Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling, Appl. Biochem. Microbiol., 2015, vol. 51, no. 4, pp. 451–454.CrossRefGoogle Scholar
  6. 6.
    Yastreb, T.O., Kolupaev, Yu.E., Lugovaya A.A., and Dmitriev, A.P., Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling, Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 210–215.CrossRefGoogle Scholar
  7. 7.
    Yastreb, T.O., Kolupaev, Yu.E., Karpets, Yu.V., and Dmitriev, A.P., Effect of nitric oxide donor on salt resistance of Arabidopsis jin1 mutants and wild-type plants, Russ. J. Plant Physiol., 2017, vol. 64, no. 2, pp. 207–214.CrossRefGoogle Scholar
  8. 8.
    Ton, J., Flors, V., and Mauch-Mani, B., The multifaceted role of ABA in disease resistance, Trends Plant Sci., 2009, vol. 14, no. 6, pp. 310–317.CrossRefPubMedGoogle Scholar
  9. 9.
    Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., and Solano, R., Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis, Plant Cell, 2004, vol. 16, no. 7, pp. 1938–1950.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling, Plant Cell, 2003, vol. 15, no. 1, pp. 63–78.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moons, A., Bauw, G., and Prinsen, E., Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties, Plant Physiol., 1995, vol. 107, no. 1, pp. 177–186.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nilson, S.E., and Assmann, S.M., The control of transpiration. insights from Arabidopsis, Plant Physiol., 2007, vol. 143, no. 1, pp. 19–27.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Akhiyarova, G.R., Fricke, W., Veselov, D.S., Kudoyarova G.R., and Veselov, S.Yu., ABA accumulation and distribution during the leaf tissues shows its role stomatal conductance regulation under short-term salinity, Tsitologiya, 2006, vol. 48, no. 11, pp. 918–923.Google Scholar
  14. 14.
    Hare, P.D., Cress, W.A., and van Staden, J., Proline synthesis and degradation: a model system for elucidating stress-related signal transduction, J. Exp. Bot., 1999, vol. 50, no. 333, pp. 413–434.Google Scholar
  15. 15.
    Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F., Proline mechanisms of stress survival, Antioxid. Redox Signal., 2013, vol. 19, no. 9, pp. 998–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou, B., and Guo, Z., Calcium is involved in the abscisic acid-induced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis, Biol. Plant, 2009, vol. 53, no. 1, pp. 63–68.CrossRefGoogle Scholar
  17. 17.
    Guajardo, E., Juan, A.C., and Contreras-Porcia, L., Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species, Planta, 2016, vol. 243, no. 3, pp. 767–781.CrossRefPubMedGoogle Scholar
  18. 18.
    Novikova, G.V., Stepanchenko, N.S., Nosov, A.V., and Moshkov, I.E., At the beginning of the route: ABA perception and signal transduction in plants, Russ. J. Plant Physiol., 2009, vol. 56, no. 6, pp. 727–741.CrossRefGoogle Scholar
  19. 19.
    Gibeaut, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions, Plant Physiol., 1997, vol. 115, no. 2, pp. 317–319.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ramírez, V., Coego, A., Lopez, A., Agorio, A., Flors, V., and Vera P., Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator, Plant J., 2009, vol. 58, no. 4, pp. 578–591.CrossRefPubMedGoogle Scholar
  21. 21.
    Iakovenko, O.M., Kretynin, S.V., Kabachevskaya, E.M., Lyakhnovich, G.V., Volotovski, D.I., and Kravets, V.S., Role of phospholipase C in ABA regulation of stomata function, Ukr. Bot. J., 2008, vol. 65, no. 4, pp. 605–613.Google Scholar
  22. 22.
    Savouré, A., Hua, X.J., Bertauche, N., Van Montagu, M., and Verbruggen, N., Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana, Mol. Gen. Genet., 1997, vol. 254, no. 1, pp. 104–109.CrossRefPubMedGoogle Scholar
  23. 23.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, no. 1, pp. 205–207.CrossRefGoogle Scholar
  24. 24.
    Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., and Oboznyi, A.I., Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance, Russ. J. Plant Physiol., 2014, vol. 61, no. 3, pp. 339–346.CrossRefGoogle Scholar
  25. 25.
    Alscher, R.G., Erturk, N., and Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341.CrossRefPubMedGoogle Scholar
  26. 26.
    Geng, S., Misra, B.B., de Armas, E., Huhman, D.V., Alborn, H.T., Sumner, L.W., and Chen, S., Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics, Plant J., 2016, vol. 88, no. 6, pp. 947–962.CrossRefPubMedGoogle Scholar
  27. 27.
    Sánchez-Romera, B., Ruiz-Lozano, J.M., Li, G., Luu, D.T., Martinez-Ballesta, C.M., Carvajal, M., Zamarreno, A.M., García-Mina, J.M., Maurel, C., and Aroca, R., Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process, Plant Cell Environ., 2014, vol. 37, no. 4, pp. 995–1008.CrossRefPubMedGoogle Scholar
  28. 28.
    Kazan, K., Diverse roles of jasmonates and ethylene in abiotic stress tolerance, Trends Plant Sci., 2015, vol. 20, no. 4, pp. 219–229.CrossRefPubMedGoogle Scholar
  29. 29.
    Kavi Kishor, P.B., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., and Sreenivasulu, N., Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance, Curr. Sci., 2005, vol. 88, no. 3, pp. 424–438.Google Scholar
  30. 30.
    Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F., and Tan, M., Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants, New Phytol., 2007, vol. 173, no. 1, pp. 27–38.CrossRefGoogle Scholar
  31. 31.
    Lama, R., Jaishee, N., and Chakraborty, U., Ameliorative effects of ABA and proline during drought stress in maize enhancing its protective mechanism, World Appl. Sci. J., 2016, vol. 34, no. 2, pp. 174–181.Google Scholar
  32. 32.
    Huang, X., Stettmaier, K., Michel, C, Hutzler, P., Mueller, M.J., and Durner, J., Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana, Planta, 2004, vol. 218, no. 6, pp. 938–946.CrossRefPubMedGoogle Scholar
  33. 33.
    Lackman, P., González-Guzmán, M., Tilleman, S., Carqueijeiro, I., Pérez, A.C., Moses, T., Seo, M., Kanno, Y., Häkkinen, S.T., Montagu, M.C.E.V., Thevelein, J.M., Maaheimo, H., Oksman-Caldentey, K.M., Rodriguez, P.L., Rischer, H., and Goossens A., Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 14, pp. 5891–5896.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • T. O. Yastreb
    • 1
  • Yu. E. Kolupaev
    • 1
    • 2
  • A. A. Lugovaya
    • 1
  • A. P. Dmitriev
    • 3
  1. 1.Dokuchaev Kharkiv National Agrarian UniversityKharkivUkraine
  2. 2.Karazin Kharkiv National UniversityKharkivUkraine
  3. 3.Institute of Cell Biology and Genetic EngineeringUkraine National Academy of SciencesKyivUkraine

Personalised recommendations