Advertisement

Cytology and Genetics

, Volume 51, Issue 3, pp 230–237 | Cite as

Mutagens induced chromosomal damage in Lablab purpureus (L.) Sweet var. typicus

  • S. MonicaEmail author
  • N. Seetharaman
Article

Abstract

Cytological analysis with respect to meiotic behaviour is considered to be the one of the most dependable indices to estimate the potency of mutagens and to elucidate the response of various genotypes to a particular mutagen. Seeds of Lablab purpureus (L.) Sweet var. typicus cv. CO(Gb)14 were subjected to different doses/concentrations of gamma rays and EMS. The effects of different mutagenic treatments on meiosis were studied on treated and control plants. Various types of meiotic aberrations such as stickiness, clumping of chromosomes, laggards, ring chromosomes and precocious movements were observed in the mutagenic treatments. As increase in the concentration, the frequency of cells showing chromosomal aberrations shows a linear increase up to a certain level. However, the EMS treatments proved to be more effective in inducing meiotic aberrations as compared to gamma rays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kay, D.E, Hyacinth bean, in Forage Legumes: Crop and Product Digest, Tropical Products Institute, 1979, vol. 3, pp. 184–196.Google Scholar
  2. 2.
    Maass, B.L., Jamnadass, R.H., Hanson, J., and Pengelly, B.C, Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism, Genet. Res. Crop. Evol., 2005, vol. 52, pp. 683–695.CrossRefGoogle Scholar
  3. 3.
    Mir, F.U.A., Rahman, S.M.L., Mesbahuddin AhmedA.S.M., and Quebedeaux, B, Agroforestry as it pertains to vegetable production in Bangladesh, J. Agron., 2004, vol. 3, no. 4, pp. 282–290.CrossRefGoogle Scholar
  4. 4.
    Basu, A.K., Samantha, S.K., and Sasmala, A.C, Genetic analysis for some seed parameters in lablab bean, Vegetabl. Sci., 2002, vol. 29, no. 1, pp. 17–19.Google Scholar
  5. 5.
    Golani, I.J., Mehta, D.R., Naliyadhra, M.V., Patel, R.K., and Kanzariya, M.V, Genetic variability, correlation and path analysis for green pod yield and its characters in hyacinth bean, Orissa J. Hortic., 2007, vol. 35, no. 1, pp. 71–75.Google Scholar
  6. 6.
    Morris, J.B., Legume Genetic Resources with Novel “Value Adde” Industrial and Pharmaceutical Use, Janick, J., Ed., Alexandria: ASHS Press,1999, pp. 196–201.Google Scholar
  7. 7.
    Micke, A., Donini, B., and Maluszynski, M, Induced mutations for crop improvement—a review, Tropic. Agric., 1987, vol. 64, pp. 259–278.Google Scholar
  8. 8.
    Gnanamurthy, S., Dhanavel, D., and Girija, M, Studies on induced chemical mutagenesis in maize (Zea mays L.), Int. J. Curr. Res., 2011, vol. 3, no. 11, pp. 37–40.Google Scholar
  9. 9.
    Sarada, C, Srinivasa, RaoV., Umajyothi, K., and Reddy, P.V., Mutagenic effectiveness and efficacy of gamma rays and EMS in coriander (Coriandrum sativum L.), Int. J. Pure Appl. Biosci., 2015, vol. 3, no. 2, pp. 445–449.Google Scholar
  10. 10.
    Khursheed, S., Raina, A., and Khan, S, Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis, Arch. Curr. Res. Int., 2016, vol. 4, no. 1, pp. 1–7.CrossRefGoogle Scholar
  11. 11.
    FAO/IAEA, Mutant Varieties Database (MVD), 2012.Google Scholar
  12. 12.
    Ahloowalia, B.S., Maluszynski, M., and Nichterlein, K, Global impact of mutation derived varieties, Euphytica, 2004, vol. 135, no. 2, pp. 187–204.CrossRefGoogle Scholar
  13. 13.
    Lieber, M.R, Pathological and physiological double strand-breaks, Am. J. Pathol., 1998, vol. 153, no. 5, pp. 1323–1332.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Avijeet, C., Shukla, S., Rastogi, A., Mishra, B.K., Ohri, D., and Singh, S.P, Impact of mutagenesis on cytological behavior in relation to specific alkaloids in Opium Poppy (Papaver somniferum L.), Caryologia, 2011, vol. 64, no. 1, pp. 14–24.CrossRefGoogle Scholar
  15. 15.
    Kumar, G. and Srivastava, N, Efficiency and effectiveness of gamma rays and sodium azide in sesbania cannabina poir, Cytologia, 2013, vol. 78, no. 1, pp. 81–90.CrossRefGoogle Scholar
  16. 16.
    Al-Ansary, A.M.F., Nagwa, R., and Abd-El, HamiedA.M., and Ottai, M.E.S, Cytogenetic changes and genomic DNA assay of Sudani and Masri Roselle varieties affected by different gamma irradiation doses, Int. J. ChemTech Res., 2016, vol. 9, no. 3, pp. 97–107.Google Scholar
  17. 17.
    Kamaruddin, N., Abdullah, S., and Rahim, HarunA., The effect of gamma rays on the radiosensitivity and cytological analysis of Zingiber officinale Roscoe varieties Bentong and Tanjung Sepat, Int. J. Adv. Agric. Environ. Eng., 2016, vol. 3, no. 1, pp. 142–145.Google Scholar
  18. 18.
    Oleinick, N.L., Balasubramaniam, U., Xue, L., and Chiu, S, Nuclear structure and the microdistribution of radiation damage in DNA, Int. J. Radiat. Biol., 1994, vol. 66, no. 5, pp. 523–529.PubMedCrossRefGoogle Scholar
  19. 19.
    Srivastava, P., Marker, S., Pandey, P., and Tiwari, D.K, Mutagenic effects of sodium azide on the growth and yield characteristics in wheat (Triticum aestivum L. Em. Thell), Asian J. Plant Sci., 2011, vol. 10, no. 3, pp. 190–201.CrossRefGoogle Scholar
  20. 20.
    Gunasekaran, A. and Pavadai, P, Studies on induced physical and chemical mutagenesis in groundnut (Arachis hypogia), Int. Lett. Nat. Sci., 2015, vol. 35, pp. 25–35.Google Scholar
  21. 21.
    Patil, B. and Bhat, G.I., A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternatea L., Cytologia, 1992, vol. 57, no. 2, pp. 259–264.CrossRefGoogle Scholar
  22. 22.
    Bashir, S., Wani, A.A., and Nawchoo, I.A, Chromosomal damage induced by gamma rays, ethyl methyl sulphonate and sodium azide in Trigonella foenumgraecum L, Chromosome Bot., 2013, vol. 8, pp. 1–6.Google Scholar
  23. 23.
    Jafri, I.F., Khan, A., and Gulfishan, M, Genomic damage induced by individual and combination treatment of gamma rays and ethyl methane sulphonate in Coriandrum sativum L. var. Karishma, Int. J. Bot. Res., 2013, vol. 3, no. 2, pp. 79–85.Google Scholar
  24. 24.
    Kumar, G. and Gupta, P, Mutagenic efficiency of lower doses of gamma rays in black cumin (Nigella sativa L.), Cytologia, 2007, vol. 72, no. 4, pp. 435–440.CrossRefGoogle Scholar
  25. 25.
    Gulfishan, M., Khan, A.H., Jafri, I.F., and Bhat, T.A, Assessment of mutagenicity induced by MMS and DES in Capsicum annuum L, Saudi J. Biol. Sci., 2012, vol. 19, no. 2, pp. 251–255.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gecheff, K.I, Production and identification of new structural chromosome mutations in barley (Hordeum vulgare L.), Theor. Appl. Genet., 1996, vol. 92, no. 6, pp. 777–781.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaymak, F, Cytogenetic effect of maleic hydrazide on Helianthus annus L., Pakistan J. Biol. Sci., 2005, vol. 8, no. 1, pp. 104–108.CrossRefGoogle Scholar
  28. 28.
    Srivastava, A. and Kapoor, K, Seed yield is not impaired by chromosome stickiness in sodium azide treated Trigonella foenum-graecum, Cytologia, 2008, vol. 73, no. 2, pp. 115–121.CrossRefGoogle Scholar
  29. 29.
    Zeerak, N.A, Mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate in brinjal (Solanum melongena L.), J. Nucl. Agric. Biol., 1992, vol. 21, pp. 84–87.Google Scholar
  30. 30.
    Darlington, C.D. and La Cour, L.F., The Handling of Chromosomes, London: George Allen and Unwin Ltd., 1962.Google Scholar
  31. 31.
    Azad, S.A, Mutagens induced meiotic chromosomal abnormalities in variety Asha of Mungbean, Indian J. Sci. Res., 2011, vol. 2, no. 4, pp. 29–31.Google Scholar
  32. 32.
    Kumar, G. and Dwivedi, K, Ionizing radiation mediated cytological manifestation in microsporogenesis of Brassica campestris L. (Brassicaceae), J. Central Eur. Agric., 2012, vol. 13, no. 4, pp. 805–813.CrossRefGoogle Scholar
  33. 33.
    Haneef, I., Khan, A.H., Aslam, R., Gulfishan, M., and Choudhary, S, Assessment of genotoxicity of ethylmethane sulphonate (EMS) in two varieties of Lentil (Lens culinaris Medik.), Biosci. Int., 2013, vol. 2, no. 1, pp. 01–04.Google Scholar
  34. 34.
    Goyal, S. and Khan, S, Cytology of induced morphological mutants in Vigna mungo (L.) Hepper, Egypt. J. Biol., 2010, vol. 12, pp. 81–85.Google Scholar
  35. 35.
    Alka, M.Y.K., Mohsin, BhatT., Choudhary, S., and Aslam, R, Genotoxic effect of ethyl methane sulphonate and sodium azide in Linum usitatissimum L, Int. J. Plant. Anim. Environ. Sci., 2012, vol. 2, no. 3, pp. 1–6.Google Scholar
  36. 36.
    Jayabalan, N. and Rao, G.R, Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mull. var. Pusa Ruby, Cytologia, 1987, vol. 52, pp. 1–4.CrossRefGoogle Scholar
  37. 37.
    El-Khodary, S., Habib, A., and Haliem, A, Cytological effect of herbicide garlon-4 on root mitosis of allium cepa, Cytologia, 1989, vol. 54, no. 3, pp. 465–472.CrossRefGoogle Scholar
  38. 38.
    Bhat, T.A., Sharma, M., and Anis, M, Comparative analysis of meiotic aberrations induced by diethylsulphonate and sodium azide in broad bean (Vicia faba L.), Asian J. Plant Sci., 2007, vol. 6, pp. 1051–1057.CrossRefGoogle Scholar
  39. 39.
    Iqbal, M. and Datta, A.K, Cytogenetics studies in Withania somnifera (L.) (Solanaceae), Cytologia, 2007, vol. 72, no. 1, pp. 43–47.CrossRefGoogle Scholar
  40. 40.
    Khan, Z., Gupta, H., Ansari, M.Y.K., and Chaudhary, S, Methyl methane sulphonate induced chromosomal variations in a medicinal plant Cichorium intybus L. during microsporogenesis, Biol. Med., 2009, vol. 1, no. 2, pp. 66–69.Google Scholar
  41. 41.
    Avijeet, C., Shukla, S., Ratogi, A., Mishra, B.K., Ohri, D., and Singh, S.P, Impact of mutagenesis on cytological behavior in relation to specific alkaloids in Opium Poppy (Papaver somniferum L.), Caryologia, 2011, vol. 64, no. 1, pp. 14–24.CrossRefGoogle Scholar
  42. 42.
    Beadle, G.W., A gene for sticky chromosomes in Zea mays, Zschr, Ind. Abst. Vererb., 1932, vol. 63, no. 1, pp. 195–217.Google Scholar
  43. 43.
    Bione, N.C.P., Pagliarini, M.S., and Toledo, J.F.F, Meiotic behavior of several Brazilian soybean varieties, Genet. Mol. Biol., 2000, vol. 23, no. 3, pp. 623–631.CrossRefGoogle Scholar
  44. 44.
    McGill, M., Pathak, S., and Hsu, T.C, Effects of ethidium bromide on mitosis and chromosomes: a possible material basis for chromosome stickiness, Chromosoma, 1974, vol. 47, no. 2, pp. 157–166.PubMedCrossRefGoogle Scholar
  45. 45.
    Klasterska, I., Natrajan, A.T., and Ramel, C, An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations, Hereditas, 1976, vol. 83, pp. 153–162.PubMedCrossRefGoogle Scholar
  46. 46.
    Myers, J.R., Gritton, E.T., and Struckmeyer, B.E, Genetic male sterility in pea (Pisum sativum), Euphytica, 1992, vol. 63, pp. 245–256.Google Scholar
  47. 47.
    Tarar, J.L. and Dnyansagar, V.R, Comparison of ethyl methane sulphonate and radiation induced meiotic abnormalities in Turnera ulmifolia Linn. var. angustifolia wild, Cytologia, 1980, vol. 45, pp. 221–231.CrossRefGoogle Scholar
  48. 48.
    Gaulden, M.E, Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations, Mutagenesis, 1987, vol. 2, no. 5, pp. 357–365.PubMedGoogle Scholar
  49. 49.
    Jabee, F. and Ansari, M.Y.K, Mutagenic effectiveness and efficiency of hydrazine sulphate (HS) in inducing cytomorphological mutations in Cicer arietinum L. var. K-850, J. Cytol. Genet., 2005, vol. 6, no. 2, pp. 161–166.Google Scholar
  50. 50.
    Khan, M.R. and Aslam, K.M, Effect of 2,4-D on seedling physiology and cytogenetical studies in Triticum aestivum and Phelaris minor (Gramineae), Acta Bot. Yun., 2006, vol. 28, no. 4, pp. 394–398.Google Scholar
  51. 51.
    Chidambaram, A., Sundaramoorthy, P., Murugan, A., and Baskaran, S.G.L, Chromium induced cytotoxicity in black gram (Vigna mungo L.), Iran. J. Environ. Health Sci. Eng., 2009, vol. 6, no. 1, pp. 17–22.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of BotanyAnnamalai UniversityTamil naduIndia

Personalised recommendations