Advertisement

Cytology and Genetics

, Volume 51, Issue 3, pp 162–172 | Cite as

Leukocyte actin cytoskeleton reorganization and redistribution of sialylated membrane glycoconjugates under experimental diabetes mellitus and against the administration of the Galega officinalis L. extract

  • M. Lupak
  • H. Hachkova
  • M. Khokhla
  • Ya. Chajka
  • M. Skybitska
  • N. SybirnaEmail author
Article

Abstract

The article describes the effect of alkaloid-free fraction of the Galega officinalis extract (AFFGE) on the aggregation ability of immunocompetent blood cells, as well as on the process of actin polymerization and structural rearrangements among sialylated glycoconjugates of the peripheral blood leukocyte membranes of rats in the norm and under experimental diabetes mellitus (EDM) conditions. The flow cytometry method (using phalloidin labelled with fluorescent tetramethyl rhodamine-5-isothiocyanate (TRITC)) and the western blot analysis have allowed us to detect an increase in the rat leukocyte F-actin content in the event of diabetes mellitus, which indicated changes in the structural and functional properties of the leukocytes and their preactivation phase. A quantitative analysis of the total polymerized actin pool redistribution between its constituent fraction (represented by cytoskeletal filaments) and short actin filaments has shown that, against an increase in the total F-actin level, the number of actin filaments of the cytoskeleton decreased and the content of short actin filaments increased in leukocytes of animals with EDM. The use of sialylated lectins has allowed a conclusion to be made on the study of the pathology that the number of exposed oligosaccharide determinants on leukocyte membrane, the structure of which contained N-acetyl-β-D-glucosamine and sialic acid residues, increased, whereas the number of sialic acid-containing surface glycoconjugates bound to subterminal galactose residues by α2→3 and α2→6-glycoside bonds decreased. The administration of AFFGE to diabetic animals led to an increase in the content of F-actin and short filaments of the leukocyte cytoskeleton and a reduction in the lectin-induced leukocyte aggregation. The correction effect of the studied extract on the functional state of leukocytes can be realized through the action on the processes underlying the formation of the actin cytoskeletal elements and due to the quantitative redistribution of leukocyte membrane glycoconjugates with different structures of carbohydrate determinants, such as, due to a decrease in the exposure of N-acetyl-β-D-glucosamine residues and an increase in the exposure of sialic acids bound to subterminal galactose residues by α2→3 and α2→6-glycoside bonds.

Keywords

actin cytoskeleton sialylated conjugates leukocytes diabetes mellitus Galega officinalis extract 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker, J.M, Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening, J. Clin. Endocrinol. Metab., 2006, vol. 91, no. 4, pp. 1210–1217.CrossRefGoogle Scholar
  2. 2.
    Herold, K.C., Vignali, D.A.A., Cooke, A., and Bluestone, J.A, Type 1 diabetes: translating mechanistic observations into effective clinical outcomes, Nat. Rev. Immunol., 2013, vol. 13, no. 4, pp. 243–256.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Weetman, A.P, Autoimmune thyroid disease, Autoimmunity, 2004, vol. 37, no. 4, pp. 337–340.PubMedCrossRefGoogle Scholar
  4. 4.
    Zak, K.P. and Popova, V.V, Chemokines in human type 1 diabetes mellitus, Ukr. Med. J., 2008, vol. 6, no. 68, pp. 69–78.Google Scholar
  5. 5.
    Rosales, C. and Juliano, R.L, Signal transduction by cell adhesion receptors in leukocytes, J. Leukocyte Biol., 1995, vol. 57, no. 2, pp. 189–198.PubMedCrossRefGoogle Scholar
  6. 6.
    Saigitov, R.T., Chemokines—a new family of cytokines regulating leukocyte migration, J. Microbiol. Epidemiol. Immunobiol., 2000, no. 1, pp. 90–94.Google Scholar
  7. 7.
    Mayansky, A.N. and Mayansky, D.N., Essays About Neutrophil and Macrophage, Novosibirsk: Nauka, 1989.Google Scholar
  8. 8.
    Aiba, Y., Kameyama, M., Yamazaki, T., Tedder, T.F., and Kurosaki, T, Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase, Blood, 2008, vol. 111, no. 3, pp. 1497–1503.PubMedCrossRefGoogle Scholar
  9. 9.
    Sybirna, N.O., Brodyak, I.V., Bars’ka, M.L., Vovk, O.I, Participation of phosphatidylinositol-3'-kinase in signal transduction through galactosyl-containing glycoprotein receptors of segmentonuclear leukocytes under type 1 diabetes mellitus, Phiziol. J., 2012, vol. 58, no. 6, pp. 9–22.Google Scholar
  10. 10.
    Carlier, M., Actin-Based Motility: Cellular, Molecular and Physical Aspects, Springer, 2010.CrossRefGoogle Scholar
  11. 11.
    Ballestrem, C., Wehrle-Haller, B., and Imhof, B., Actin dynamics in living mammalian cells, J. Cell Sci., 1998, vol. 111, pp. 1649–1658.Google Scholar
  12. 12.
    Hannigan, M., Zhan, L., Ai, Y., and Huang, C.K, Leukocyte-specific gene 1 protein (LSP1) is involved in chemokine KC-activated cytoskeletal reorganization in murine neutrophils in vitro, J. Leukoc. Biol., 2001, vol. 69, no. 3, pp. 497–504.PubMedGoogle Scholar
  13. 13.
    Haitov, R.M., Pinegin, B.V., and Yarilin, A.A., Handbook in Clinical Immunology: Diagnostics of Immune System Diseases: Handbook for Physicians, Moscow: GEOTAR-Media, 2009.Google Scholar
  14. 14.
    Alon, R. and Rosen, S, Rolling on N-linked glycans: a new way to present L-selectin binding sites, Nat. Immunol., 2007, vol. 8, no. 4, pp. 339–341.PubMedCrossRefGoogle Scholar
  15. 15.
    Walrand, S., Guillet, C., Boirie, Y., and Vasson, M, In vivo evidences that insulin regulates human polymorphonuclear neutrophil functions, J. Leukocyte Biol., 2004, vol. 76, no. 6, pp. 1104–1110.PubMedCrossRefGoogle Scholar
  16. 16.
    Sybirna, N.O., Hachkova, H.Ya., and Khokhla, M.R., UA Patent no. 96839, A method for producing of alkaloid-free extract from Galega officinalis with antidiabetic action, 25.02.2015.Google Scholar
  17. 17.
    Sybirna, N., Vil’danova, R., Shul’ha, O., Shchehlova, N., Karpenko, O., Khokhla, M., Hachkova, H., and Lupak, M., UA Patent no. 101202, A method of phytodrug producing based on alkaloid-free fraction from Galega officinalis extract, 25.08.2015.Google Scholar
  18. 18.
    Khokhla, M., Kleveta, G., Kotyk, A., Skybitska, M., Chajka, Ya., and Sybirna, N., Sugar-lowering effects of Galega officinalis L., Ann. Univ. Mariae Curie-Sklodowska, 2010, vol. 23, no. 4, pp. 177–182.Google Scholar
  19. 19.
    Lupak, M.I., Khokhla, M.R., Hachkova, G.Ya., Kanyuka, O.P., Klymyshyn, N.I., Chajka, Ya.P., Skybitska, M.I., and Sybirna, N.O, The alkaloid-free fraction from Galega officinalis extract prevents oxidative stress under experimental diabetes mellitus, Ukr. Biochem. J., 2015, vol. 87, no. 4, pp. 78–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Khokhla, M., Kleveta, G., Chajka, Ya., Skybitska, M., and Sybirna, N, The influence of galega officinalis on rats leukocytes apoptosis under the experimental diabetes mellitus type 1, Visnyk Lviv Univ. Ser. Biol., 2012, vol. 60, pp. 117–125.Google Scholar
  21. 21.
    Khokhla, M.R., Kleveta, H.Ya., Solilyak, Z.V., Chayka, Ya.P., Skybits’ka, M.I., and Sybirna, N.O, Analysis of erythrocytes acid hemolysis changes under the experimental diabetes mellitus and admission of Galega officinalis L. medicine, Med. Clin. Chem., 2011, vol. 9, no. 4, pp. 28–33.Google Scholar
  22. 22.
    Khokhla, M., Lupak, M., Kaniuka, O., Chajka, Ya., Skybitska, M., and Sybirna, N, Studies of Galega officinalis extract component, Visnyk Lviv Univ. Ser. Biol., 2013, vol. 62, pp. 55–60.Google Scholar
  23. 23.
    Lapovets, L.Ye. and Lutsyk, B.D., Manual of Laboratory Immunology. Kyiv, 2004.Google Scholar
  24. 24.
    Lowri, O.H., Rosenbraugh, N.J., Farr, A.L., and Randall, R.J, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.Google Scholar
  25. 25.
    Kwiatkowska, K., Frey, J., and Sobota, A, Phosphorylation of FcgRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts, J. Cell Sci., 2003, vol. 16, pp. 537–550.CrossRefGoogle Scholar
  26. 26.
    Kwiatkowska, K. and Sobota, A, Engagement of spectrin and actin capping of FcRII revealed by studies on permeabilized U937 cells, Biochem. Biophys. Res. Commun., 1999, vol. 259, no. 2, pp. 287–293.PubMedCrossRefGoogle Scholar
  27. 27.
    Khomeriki, S., Kubatiev, A., and Shliapnikov, V., Lectin- induced aggregation of neutrophilic granulocytes before and after irradiation of the blood with a heliumneon laser, Hematol. Transfuziol., 1993, vol. 38, no. 7, pp. 26–28.Google Scholar
  28. 28.
    Timoshenko, A.V. and Cherenkevich, S.N, Induced aggregation of cells, Ukr. Biochem. J., 1991, vol. 63, no. 6, pp. 3–14.Google Scholar
  29. 29.
    Antonjuk, V.A., Lectins and Their Resources, Lviv, 2005.Google Scholar
  30. 30.
    Aksenov, D.V., Kaplun, V.V., Tertov, V.V., Sobenin, I.A., and Orekhov, A.N, Effect of plant extracts on transsialidase activity in human blood plasma, Bull. Exp. Biol. Med., 2007, vol. 143, no. 1, pp. 46–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Karlsson, A, Wheat germ agglutinin induces NADPHoxidase in human neutrophils by interaction with mobilizable receptors, Infect. Immun., 1999, vol. 67, no. 7, pp. 3461–3468.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Soudais, C., de Villartay, J.P., Le Deist, F., Fischer, A., and Lisowska-Grospierre, B, Independent mutations of the human CD3- gene resulting in a T cell receptor/ CD3 complex immunodeficiency, Nat. Genet., 1993, vol. 3, no. 1, pp. 77–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Each, S., Tavares, R., Stopa, E.G., Robbins, S.H., Brossay, L., and Atwood, W.J, Differential distribution of the JC virus receptor-type sialic acid in normal human tissues, Am. J. Pathol., 2004, vol. 164, no. 2, pp. 419–428.CrossRefGoogle Scholar
  34. 34.
    Crocker, P.R, Siglecs in innate immunity, Curr. Opin. Pharmacol., 2005, vol. 5, no. 4, pp. 431–437.PubMedCrossRefGoogle Scholar
  35. 35.
    Fernandez-Rodrieguez, J., Feijoo-Carnero, C., Merino-Trigo, A., Paez de la Cadena, M., Rodriguez-Berrocal, F.J., Carlos, A., Butryn, M., and Martinez-Zorzano, V.S, Immunohistochemical analysis of sialic acid and fucose composition inhuman colorectal adenocarcinoma, Tumor Biol., 2000, vol. 21, no. 3, pp. 153–164.CrossRefGoogle Scholar
  36. 36.
    Advani, A., Marshall, S.M., and Thomas, T.H, Increasing neutrophil F-actin corrects CD11b exposure in type 2 diabetes, Eur. J. Clin. Invest., 2004, vol. 34, no. 5, pp. 358–364.PubMedCrossRefGoogle Scholar
  37. 37.
    Sheu, M.L., Ho, F.M., Chao, K.F., Kuo, M.L., and Liu, S.H, Activation of phosphoinositide 3-kinase in response to high glucose leads to regulation of reactive oxygen species related nuclear factor-kB activation and cyclooxygenase-2 expression in mesangial cells, Mol. Pharmacol., 2004, vol. 66, no. 1, pp. 187–196.PubMedCrossRefGoogle Scholar
  38. 38.
    Sybirna, N., Brodyak, I., Bars’ka, M., Vovk, O, Activation of the phosphatidylinositol-3'-kinase pathway with lectin-induced signal through sialocontaining glycoproteins of leukocyte membranes under type 1 diabetes mellitus, Ukr. Biochem. J., 2011, vol. 83, no. 5, pp. 22–31.Google Scholar
  39. 39.
    Samstag, Y., Eibert, S.M., Klemke, M., and Wabnitz, G.H, Actin cytoskeletal dynamics in T-lymphocyte activation and migration, J. Leukocyte Biol., 2003, vol. 73, no. 1, pp. 30–48.PubMedCrossRefGoogle Scholar
  40. 40.
    Kleveta, G., Borzecka, K., Zdioruk, M., Czerkies, M., Kuberczyk, H., Sybirna, N., Sobota, A., and Kwiatkowska, K., LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility, J. Cell. Biochem., 2012, vol. 113, no. 1, pp. 80–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Baud, V. and Karin, M, Signal transduction by tumor necrosis factor and its relatives, Trends Cell Biol., 2001, vol. 11, no. 9, pp. 372–377.PubMedCrossRefGoogle Scholar
  42. 42.
    Nakao, S., Kuwano, T., Ishibashi, T., Kuwano, M., and Ono, M, Synergistic effect of TNF-alpha in soluble VCAM-1-induced angiogenesis through alpha 4 integrins, J. Immunol., 2003, vol. 170, no. 11, pp. 5704–5711.PubMedCrossRefGoogle Scholar
  43. 43.
    Hahmann, C. and Schroeter, T., Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity, Cell. Mol. Life Sci., 2010, vol. 67, no. 2, pp. 171–177.PubMedCrossRefGoogle Scholar
  44. 44.
    Riento, K. and Ridley, A.J, Rocks: multifunctional kinases in cell behaviours, Nat. Rev. Mol. Cell Biol., 2003, vol. 4, no. 6, pp. 446–456.PubMedCrossRefGoogle Scholar
  45. 45.
    Arita, R., Nakao, S., Kita, T., Kawahara, S., Asato, R., Yoshida, Sh., Enaida, H., Hafezi-Moghadam, A., and Ishibashi, T., A key role for rock in TNF-a-mediated diabetic microvascular damage, Invest. Ophthalmol. Vis. Sci., 2013, vol. 54, no. 3, pp. 2373–2383.PubMedCrossRefGoogle Scholar
  46. 46.
    Serafini, M., Peluso, I., and Raguzzini, A, Flavonoids as anti-inflammatory agents, Proc. Nutr. Soc., 2010, vol. 69, no. 3, pp. 273–278.PubMedCrossRefGoogle Scholar
  47. 47.
    Yu, Y., Correll, P.H., and Vanden Heuvel, J.P, Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARG-dependent mechanism, Biochim. Biophys. Acta, 2002, vol. 1581, no. 3, pp. 89–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Melo, C.M., Morais, T.C., Tome, A.R., Brito, G.A., Chaves, M.H., Rao, V.S., Santos, F.A, Antiinflammatory effect of -amyrin, a triterpene from Protium heptaphyllum, on cerulein-induced acute pancreatitis in mice, Inflam. Res., 2011, vol. 60, no. 7, pp. 673–681.Google Scholar
  49. 49.
    Elmazar, M., Elmazar, M., El-Abhar, H.S., Schaalan, M.F., and Farag, N.A., Phytol/phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations, PLoS One, 2013, vol. 8, no. 1, pp. 1–10.CrossRefGoogle Scholar
  50. 50.
    Sarkodie, J.A., Fleischer, T.C., Edoh, D.A., Dickson, R.A., Mensah, M.L.K., Annan, K., Woode, E., Koffour, G.A., Appiah, A.A., and Brew-Daniels, H, Antihyperglycaemic activity of ethanolic extract of the stem of Adenia lobata Engl. (Passifloraceae), Int. J. Pharm. Sci. Res., 2013, vol. 4, no. 4, pp. 1370–1377.Google Scholar
  51. 51.
    Lee, Y.M., Haastert, B., Scherbaum, W., and Hauner, H., A phytosterol-enriched spread improves the lipid profile of subjects with type 2 diabetes mellitus. a randomized controlled trial under free-living conditions, Eur. J. Nutr., 2003, vol. 42, no. 2, pp. 111–117.PubMedCrossRefGoogle Scholar
  52. 52.
    Tanaka, M., Misawa, E., Ito, Y., Habara, N., Nomaguchi, K., Yamada, M., Toida, T., Hayasawa, H., Takase, M., Inagaki, M., and Higuchi, R, Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds, Biol. Pharm. Bull., 2006, vol. 29, no. 7, pp. 1418–1422.PubMedCrossRefGoogle Scholar
  53. 53.
    Santos, F.A., Frota, J.T., Arruda, B.R., de Melo, T.S., Silva, A.A., Brito, G.A., Chaves, M.H., and Rao, V.S, Antihyperglycemic and hypolipidemic effects of a,ß- amyrin, a triterpenoid mixture from Protium heptaphyllum in mice, Lipids Health Dis., 2012, vol. 11, no. 1, pp. 98–116.PubMedCrossRefGoogle Scholar
  54. 54.
    Collison, K.S., Parhar, R.S., Saleh, S.S., Meyer, B.F., Kwaasi, A.A., Hammami, M.M., Schmidt, A.M., Stern, D.M., and Al-Mohanna, F.A., Rage-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs), J. Leukocyte Biol., 2002, vol. 71, no. 3, pp. 433–441.PubMedGoogle Scholar
  55. 55.
    Ghitescu, L., Gugliucci, A., and Dumas, F, Actin and annexins I and II are among the main endothelial plasmalemma-associated proteins forming early glucose adducts in experimental diabetes, Diabetes, 2001, vol. 50, no. 7, pp. 1666–1674.PubMedCrossRefGoogle Scholar
  56. 56.
    Castellano, E. and Downward, J, Role of RAS in the regulation of PI3-kinase, Curr. Top. Microbiol. Immunol., 2010, vol. 346, pp. 143–169.PubMedGoogle Scholar
  57. 57.
    Cantley, L, The phosphoinositide 3-kinase pathway, Science, 2002, vol. 296, no. 5573, pp. 1655–1657.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Carpenter, C.L., Tolias, K.F, Van Vugt, A., and Hartwig, J., Lipid kinases are novel effectors of the GTPase Rac1, Adv. Enzyme Regul., 1999, vol. 39, pp. 299–312.PubMedCrossRefGoogle Scholar
  59. 59.
    Liepina, I., Czaplewski, C., Janmey, P., and Liwo, A, Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bis phosphate, Biopolymers, 2003, vol. 71, no. 1, pp. 49–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Katanaev, V.L, Molecular cascades regulating motility and chemotaxis in white blood cells, Biochemistry, 2001, vol. 66, no. 4, pp. 437–456.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • M. Lupak
    • 1
  • H. Hachkova
    • 1
  • M. Khokhla
    • 1
  • Ya. Chajka
    • 1
  • M. Skybitska
    • 1
  • N. Sybirna
    • 1
    Email author
  1. 1.Ivan Franko National University of LvivLvivUkraine

Personalised recommendations