Cytology and Genetics

, Volume 51, Issue 2, pp 87–102 | Cite as

125 years of virology and ascent of biotechnologies based on viral expressio

  • A. Giritch
  • V. Klimyuk
  • Y. GlebaEmail author


The study of viruses lasts for more than a century since their discovery in 1892. In recent decades, viruses are also being actively exploited as a biotechnological tool. Plant-virus-driven transient expression of heterologous proteins is an actively developing production platform; it is the basis of several industrial processes that are currently being used for the production of multiple recombinant proteins. Viral vectors have also become useful tools for research. Viral vectors delivered by Agrobacterium (magnifection) provide for high protein yield, rapid scale up and fast manufacturing. In this review, we explore modern approaches for biotechnological production of recombinant proteins in plants using viral vectors.


plant biotechnology plant virology plant-made recombinant proteins transient expression viral vectors magnifection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iwanowski, D., Über die Mosaikkrankheit der Tabakpflanze, Bull. Acad. Imp. Sci. St. Petersbourg, Nouv. Ser. III, 1892, vol. 35, pp. 67–70.Google Scholar
  2. 2.
    Lechevalier, H., Dmitri Iosifovich Ivanovski, Bacteriol. Rev., 1972, vol. 36, no. 2, pp. 135–145.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Stanley, W.M., Soviet studies on viruses, Science, 1944, vol. 99, pp. 136–138.PubMedCrossRefGoogle Scholar
  4. 4.
    Lustig, A. and Levine, A.J., One hundred years of virology, J. Virol., 1992, vol. 6, pp. 4629–4631.Google Scholar
  5. 5.
    Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., and Wilson, T.M.A., The 59-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo, Nucleic Acids Res., 1987, vol. 15, pp. 3257–3273.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Creager, A.N.H., Scholthof, K.-B.G., Citovsky, V., and Scholthof, H.B., Tobacco mosaic virus: pioneering research for a century, Plant Cell, 1999, vol. 11, pp. 301–308.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gleba, Y., Klimyuk, V., and Marillonnet, S., Viral vectors for the expression of proteins in plants, Curr. Opin. Biotechnol., 2007, vol. 18, pp. 134–141.PubMedCrossRefGoogle Scholar
  8. 8.
    Gleba, Y., Marillonnet, S., and Klimyuk, V., Plant virus vectors (gene expression systems), in Encyclopedia of Virology, 3rd ed., van Regenmortel, M.H.V. and Mahy, B.W.J., Eds., San Diego, CA: Elsevier Academic Press, 2008, vol. 4, pp. 155–192.Google Scholar
  9. 9.
    Gleba, Y.Y., Tusé, D., and Giritch, A., Plant viral vectors for delivery by Agrobacterium, Curr. Top. Microbiol. Immunol., 2014, vol. 375, pp. 155–192.PubMedGoogle Scholar
  10. 10.
    Canizares, M.C., Lomonossoff, G.P., and Nicholson, L., Development of cowpea mosaic virus-based vectors for the production of vaccines in plants, Expert Rev. Vaccines, 2005, vol. 4, pp. 687–697.PubMedCrossRefGoogle Scholar
  11. 11.
    Canizares, M.C., Nicholson, L., and Lomonossoff, G.P., Use of viral vectors for vaccine production in plants, Immunol. Cell. Biol., 2005, vol. 83, pp. 263–270.PubMedCrossRefGoogle Scholar
  12. 12.
    McCormick, A.A. and Palmer, K.E., Genetically engineered tobacco mosaic virus as nanoparticle vaccines, Expert. Rev. Vaccines, 2008, vol. 7, pp. 33–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Lico, C., Chen, Q., and Santi, L., Viral vectors for production of recombinant proteins in plants, J. Cell Physiol., 2008, vol. 216, pp. 366–377.PubMedCrossRefGoogle Scholar
  14. 14.
    Yusibov, V. and Rabindran, S., Recent progress in the development of plant derived vaccines, Expert Rev. Vaccines, 2008, vol. 7, pp. 1173–1183.PubMedCrossRefGoogle Scholar
  15. 15.
    Mett, V., Farrance, C.E., Green, B.J., and Yusibov, V., Plants as biofactories, Biologicals, 2008, vol. 36, pp. 354–358.PubMedCrossRefGoogle Scholar
  16. 16.
    Rybicki, E.P., Plant-produced vaccines: promise and reality, Drug. Discov. Today, 2009, vol. 14, pp. 16–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Daniell, H., Singh, N.D., Mason, H., and Streatfield, S.J., Plant-made vaccine antigens and biopharmaceuticals, Trends Plant Sci., 2009, vol. 14, pp. 669–679.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Smith, M.L., Fitzmaurice, W.P., Turpen, T.H., and Palmer, K.E., Display of peptides on the surface of tobacco mosaic virus particles, Curr. Top. Microbiol. Immunol., 2009, vol. 332, pp. 13–31.PubMedGoogle Scholar
  19. 19.
    Karg, S.R. and Kallio, P.T., The production of biopharmaceuticals in plant systems, Biotechnol. Adv., 2009, vol. 27, pp. 879–894.PubMedCrossRefGoogle Scholar
  20. 20.
    Sainsbury, F., Liu, L., and Lomonossoff, G.P., Cowpea mosaic virus-based systems for the expression of antigens and antibodies in plants, Methods Mol. Biol., 2009, vol. 483, pp. 25–39.PubMedCrossRefGoogle Scholar
  21. 21.
    Lomonossoff, G.P. and D’Aoust, M.-A., Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment, Science, 2016, vol. 353, pp. 1237–1240.PubMedCrossRefGoogle Scholar
  22. 22.
    Tschofen, M., Knopp, D., Hood, E., and Stoger, E., Plant molecular farming: much more than medicines, Annu. Rev. Anal. Chem., 2016, vol. 9, pp. 271–294.CrossRefGoogle Scholar
  23. 23.
    Gleba, Y., Marillonnet, S., and Klimyuk, V., Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 182–188.PubMedCrossRefGoogle Scholar
  24. 24.
    Donson, J., Kearney, C.M., Hilf, M.E., and Dawson, W.O., Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, pp. 7204–7208.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Turpen, T.H., Reinl, S.J., Charoenvit, Y., Hoffman, S.L., Fallarme, V., and Grill, L.K., Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus, Biotechnology (New York), 1995, vol. 13, pp. 53–57.CrossRefGoogle Scholar
  26. 26.
    Shivprasad, S., Pogue, G.P., Lewandowski, D.J., Hidalgo, J., Donson, J., Grill, L.K., and Dawson, W.O., Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors, Virology, 1999, vol. 255, pp. 312–323.PubMedCrossRefGoogle Scholar
  27. 27.
    Turpen, T.H., Tobacco mosaic virus and the virescence of biotechnology, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1999, vol. 354, pp. 665–673.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    McCormick, A.A., Kumagai, M.H., Hanley, K., Turpen, T.H., Hakim, I., Grill, L.K., Tusé, D., Levy, S., and Levy, R., Rapid production of specific vaccines for lymphoma by expression of the tumor-derived singlechain Fv epitopes in tobacco plants, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 703–708.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    McCormick, A.A., Reinl, S.J., Cameron, T.I., Vojdani, F., Fronefield, M., Levy, R., and Tusé, D., Individualized human scFv vaccines produced in plants: humoral anti-idiotype responses in vaccinated mice confirm relevance to the tumor Ig, J. Immunol. Methods, 2003, vol. 278, pp. 95–104.PubMedCrossRefGoogle Scholar
  30. 30.
    McCormick, A.A., Reddy, S., Reinl, S.J., Cameron, T.I., Czerwinkski, D.K., Vojdani, F., Hanley, K.M., Garger, S.J., White, E.L., Novak, J., Barrett, J., Holtz, R.B., Tusé, D., and Levy, R., Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a Phase I clinical study, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 10131–10136.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kumagai, M.H., Turpen, T.H., Weinzettl, N., Cioppa, G., Turpen, A.M., Donson, J., Hilf, M.E., Grantham, G.L., Dawson, W.O., Chow, T.P., Piatak, M., Jr., and Grill, L.K., Rapid, high-level expression of biologically active alpha-trichosanthin in transfected plants by an RNA viral vector, Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, pp. 427–430.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kumagai, M.H., Donson, J., Cioppa, G., Harvey, D., Hanley, K., and Grill, L.K., Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 1679–1683.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kumagai, M.H., Donson, J., Cioppa, G., and Grill, L.K., Rapid, high-level expression of glycosylated rice alpha-amylase in transfected plants by an RNA viral vector, Gene, 2000, vol. 245, pp. 169–174.PubMedCrossRefGoogle Scholar
  34. 34.
    Rabindran, S. and Dawson, W.O., Assessment of recombinants that arise from the use of a TMV-based transient expression vector, Virology, 2001, vol. 284, pp. 182–189.PubMedCrossRefGoogle Scholar
  35. 35.
    Lindbo, J.A., High-efficiency protein expression in plants from agroinfection-compatible tobacco mosaic virus expression vectors, BMC Biotechnol., 2007, vol. 7, article52.Google Scholar
  36. 36.
    O’Keefe, B.R., Vojdani, F., Buffa, V., Shattock, R.J., Montefiori, D.C., Bakke, J., Mirsalis, J., d’Andrea, A.L., Hume, S.D., Bratcher, B., Saucedo, C.J., McMahon, J.B., Pogue, G.P., and Palmer, K.E., Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 6099–6104.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., and Gleba, Y., In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 6852–6857.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y., Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants, Nat. Biotechnol., 2005, vol. 23, pp. 718–723.PubMedCrossRefGoogle Scholar
  39. 39.
    Gleba, Y., Klimyuk, V., and Marillonnet, S., Magnifection— a new platform for expressing recombinant vaccines in plants, Vaccine, 2005, vol. 23, pp. 2042–2048.PubMedCrossRefGoogle Scholar
  40. 40.
    Gils, M., Kandzia, R., Marillonnet, S., Klimyuk, V., and Gleba, Y., High-yield production of authentic human growth hormone using a plant virus-based expression system, Plant Biotechnol. J., 2005, vol. 3, pp. 613–620.PubMedCrossRefGoogle Scholar
  41. 41.
    Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y., Rapid highyield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 14701–14706.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Huang, Z., Santi, L., LePore, K., Kilbourne, J., Arntzen, C.J., and Mason, H.S., Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice, Vaccine, 2006, vol. 24, pp. 2506–2513.PubMedCrossRefGoogle Scholar
  43. 43.
    Santi, L., Giritch, A., Roy, C.J., Marillonnet, S., Klimyuk, V., Gleba, Y., Webb, R., Arntzen, C.J., and Mason, H.S., Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 861–866.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Santi, L., Batchelor, L., Huang, Z., Hjelm, B., Kilbourne, J., Arntzen, C.J., Chen, Q., and Mason, H.S., An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles, Vaccine, 2008, vol. 26, pp. 1846–1854.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Webster, D.E., Wang, L., Mulcair, M., Ma, C., Santi, L., Mason, H.S., Wesselingh, S.L., and Coppel, R.L., Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system, Plant Biotechnol. J., 2009, vol. 7, pp. 846–855.PubMedCrossRefGoogle Scholar
  46. 46.
    Vancanneyt, G., Dubald, M., Schroder, W., Peters, J., and Botterman, J., A case study for plant-made pharmaceuticals comparing different plant expression and production systems, Methods Mol. Biol., 2009, vol. 483, pp. 209–221.PubMedCrossRefGoogle Scholar
  47. 47.
    Bendandi, M., Marillonnet, S., Kandzia, R., Thieme, F., Nickstadt, A., Herz, S., Frode, R., Inoges, S., Lopez-Diaz de Cerio, A., Soria, E., Villanueva, H., Vancanneyt, G., McCormick, A., Tusé, D., Lenz, J., Butler-Ransohoff, J.E., Klimyuk, V., and Gleba, Y., Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma, Ann. Oncol., 2010, vol. 21, pp. 2420–2427.PubMedCrossRefGoogle Scholar
  48. 48.
    Werner, S., Marillonnet, S., Hause, G., Klimyuk, V., and Gleba, Y., Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 17678–17683.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lindbo, J.A., TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector, Plant Physiol., 2007, vol. 145, pp. 1232–1240.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dorokhov, Y.L., Sheveleva, A.A., Frolova, O.Y., Komarova, T.V., Zvereva, A.S., Ivanov, P.A., and Atabekov, J.G., Superexpression of tuberculosis antigens in plant leaves, Tuberculosis (Edinb.), 2007, vol. 87, pp. 218–224.CrossRefGoogle Scholar
  51. 51.
    Maclean, J., Koekemoer, M., Olivier, A.J., and Stewart, D., Hitzeroth, I.I., Rademacher, T., Fischer, R., Williamson, A.L., and Rybicki, E.P., Optimization of human papillomavirus type 16 (Hpv-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell compartment localization, J. Gen. Virol., 2007, vol. 88, pp. 1460–1469.PubMedCrossRefGoogle Scholar
  52. 52.
    Sainsbury, F. and Lomonossoff, G.P., Extremely high-level and rapid transient protein production in plants without the use of viral replication, Plant Physiol., 2008, vol. 148, pp. 1212–1218.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fujiki, M., Kaczmarczyk, J.F., Yusibov, V., and Rabindran, S., Development of a new cucumber mosaic virus-based plant expression vector with truncated 3a movement protein, Virology, 2008, vol. 381, pp. 136–142.PubMedCrossRefGoogle Scholar
  54. 54.
    Green, B.J., Fujiki, M., Mett, V., Kaczmarczyk, J., Shamloul, M., Musiychuk, K., Underkoffler, S., Yusibov, V., and Mett, V., Transient protein expression in three Pisum sativum (green pea) varieties, Biotechnol. J., 2009, vol. 4, pp. 230–237.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang, Z., Chen, Q., Hjelm, B., Arntzen, C., and Mason, H., A DNA replicon system for rapid highlevel production of virus-like particles in plants, Biotechnol. Bioeng., 2009, vol. 103, pp. 706–714.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vezina, L.P., Faye, L., Lerouge, P., D’Aoust, M.A., Marquet-Blouin, E., Burel, C., Lavoie, P.O., Bardor, M., and Gomord, V., Transient co-expression for fast and high-yield production of antibodies with humanlike nglycans in plants, Plant Biotechnol. J., 2009, vol. 7, pp. 442–455.PubMedCrossRefGoogle Scholar
  57. 57.
    Huang, Z., Phoolcharoen, W., Lai, H., Piensook, K., Cardineau, G., Zeitlin, L., Whaley, K.J., Arntzen, C.J., Mason, H.S., and Chen, Q., High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system, Biotechnol. Bioeng., 2009, vol. 106, pp. 9–17.Google Scholar
  58. 58.
    Zvereva, A.S., Petrovskaya, L.E., Rodina, A.V., Frolova, O.Y., Ivanov, P.A., Shingarova, L.N., Komarova, T.V., Dorokhov, Y.L., Dolgikh, D.A., Kirpichnikov, M.P., and Atabekov, J.G., Production of biologically active human myelocytokines in plants, Biochemistry (Mosc.), 2009, vol. 74, pp. 1187–1194.CrossRefGoogle Scholar
  59. 59.
    Kalthoff, D., Giritch, A., Geisler, K., Bettmann, U., Klimyuk, V., Hehnen, H.R., Gleba, Y., and Beer, M., Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection, J. Virol., 2010, vol. 84, pp. 12002–12010.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Joensuu, J.J., Conley, A.J., Lienemann, M., Brandle, J.E., Linder, M.B., and Menassa, R., Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana, Plant Physiol., 2010, vol. 152, no. 2, pp. 622–633.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Noris, E., Poli, A., Cojoca, R., Rittè, M., Cavallo, F., Vaglio, S., Matic, S., and Landolfo, S., A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions, Arch. Virol., 2011, vol. 156, no. 4, pp. 587–595.PubMedCrossRefGoogle Scholar
  62. 62.
    Kanagarajan, S., Tolf, C., Lundgren, A., Waldenström, J., and Brodelius, P.E., Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana, PLoS One, 2012, vol. 7, p. e33010.Google Scholar
  63. 63.
    Hamorsky, K.T., Grooms-Williams, T.W., Husk, A.S., Bennett, L.J., Palmer, K.E., and Matoba, N., Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides, Antimicrob. Agents Chemother., 2013, vol. 57, no. 5, pp. 2076–2086.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hahn, S., Giritch, A., Bartels, D., Bortesi, L., and Gleba, Y., A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants, Plant Biotechnol. J., 2015, vol. 13, no. 5, pp. 708–716.PubMedCrossRefGoogle Scholar
  65. 65.
    Schulz, S., Stephan, A., Hahn, S., Bortesi, L., Jarczowski, F., Bettmann, U., Paschke, A.-K., Tusé, D., Stahl, C.H., Giritch, A., and Gleba, Y., Broad and efficient control of major food-borne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 40, pp. E5454–E5460.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Moore, L., Hamorsky, K., and Matoba, N., Production of recombinant cholera toxin b subunit in Nicotiana benthamiana using GENEWARE® tobacco mosaic virus vector, Methods Mol. Biol., 2016, vol. 1385, pp. 129–137.PubMedCrossRefGoogle Scholar
  67. 67.
    Sainsbury, F., Jutras, P.V., Vorster, J., Goulet, M.C., and Michaud, D.A., Chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants, Front. Plant Sci., 2016, no. 7, article141.Google Scholar
  68. 68.
    Yadav, N.S., Postle, K., Saiki, R.K., Thomashow, M.F., and Chilton, M.-D., T-DNA of a crown gall teratoma is covalently joined to host plant DNA, Nature, 1980, vol. 287, pp. 458–461.PubMedCrossRefGoogle Scholar
  69. 69.
    Willmitzer, L., De Beuckeleer, M., Lemmers, M., Van Montagu, M., and Schell, J., DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells, Nature, 1980, vol. 287, pp. 359–361.CrossRefGoogle Scholar
  70. 70.
    Gelvin, S.B., Agrobacterium virulence gene induction, Methods Mol. Biol., 2006, vol. 343, pp. 77–84.PubMedGoogle Scholar
  71. 71.
    Gelvin, S.B., Agrobacterium-mediated DNA transfer, and then some, Nat. Biotechnol., 2008, vol. 26, pp. 998–1000.CrossRefGoogle Scholar
  72. 72.
    Gelvin, S.B., Agrobacterium in the genomics age, Plant Physiol., 2009, vol. 150, pp. 1665–1676.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gelvin, S.B., Plant proteins involved in Agrobacteriummediated genetic transformation, Annu. Rev. Phytopathol., 2010, vol. 48, pp. 45–68.PubMedCrossRefGoogle Scholar
  74. 74.
    Gelvin, S.B., Traversing the cell: Agrobacterium T-DNA’s journey to the host genome, Front. Plant Sci., 2012, vol. 3, article52.Google Scholar
  75. 75.
    Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T., Biological systems of the host cell involved in Agrobacterium infection, Cell Microbiol., 2007, vol. 9, pp. 9–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Dafny-Yelin, M., Levy, A., and Tzfira, T., The ongoing saga of Agrobacterium-host interactions, Trends Plant Sci., 2008, vol. 13, pp. 102–105.PubMedCrossRefGoogle Scholar
  77. 77.
    Christie, P.J. and Gordon, J.E., The Agrobacterium Ti plasmids, Microbiol. Spectrum, 2014, vol. 2, no. 6. doi 10.1128/microbiolspec.PLAS-0010-2013Google Scholar
  78. 78.
    Bourras, S., Rouxel, T., and Meyer, M., Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms, Phytopathology, 2015, vol. 105, no. 10, pp. 1288–1301.PubMedCrossRefGoogle Scholar
  79. 79.
    Lacroix, B. and Citovsky, V., Transfer of DNA from bacteria to eukaryotes, MBio, 2016, vol. 12, no. 4, p. e00863-16.Google Scholar
  80. 80.
    Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffmann, N.L., and Woo, S.C., Expression of bacterial genes in plant cells, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, pp. 4803–4807.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Barton, K.A., Binns, A.N., Matzke, A.J., and Chilton, M.D., Regeneration of intact tobacco plants containing full length copies of genetically engineered TDNA, and transmission of T-DNA to R1 progeny, Cell, 1983, vol. 32, pp. 1033–1043.PubMedCrossRefGoogle Scholar
  82. 82.
    Koo, M., Bendahmane, M., Lettieri, G.A., Paoletti, A.D., Lane, T.E., Fitchen, J.H., Buchmeier, M.J., and Beachy, R.N., Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 7774–7779.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wu, L., Jiang, L., Zhou, Z., Fan, J., Zhang, Q., Zhu, H., Han, Q., and Xu, Z., Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector, Vaccine, 2003, vol. 21, pp. 4390–4398.PubMedCrossRefGoogle Scholar
  84. 84.
    McCormick, A.A., Corbo, T.A., Wykoff-Clary, S., Nguyen, L.V., Smith, M.L., Palmer, K.E., and Pogue, G.P., TMV-peptide fusion vaccines induce cellmediated immune responses and tumor protection in two murine models, Vaccine, 2006, vol. 24, pp. 6414–6423.PubMedCrossRefGoogle Scholar
  85. 85.
    Kohl, T., Hitzeroth, II, Stewart, D., Varsani, A., Govan, V.A., Christensen, N.D., Williamson, A.L., and Rybicki, E.P., Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study, Clin. Vaccine Immunol., 2006, vol. 13, pp. 845–853.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chichester, J.A., Musiychuk, K., de la Rosa, P., Horsey, A., Stevenson, N., Ugulava, N., Rabindran, S., Palmer, G.A., Mett, V., and Yusibov, V., Immunogenicity of a subunit vaccine against Bacillus anthracis, Vaccine, 2007, vol. 25, pp. 3111–3114.PubMedCrossRefGoogle Scholar
  87. 87.
    Mett, V., Lyons, J., Musiychuk, K., Chichester, J.A., Brasil, T., Couch, R., Sherwood, R., Palmer, G.A., Streatfield, S.J., and Yusibov, V., A plant-produced plague vaccine candidate confers protection to monkeys, Vaccine, 2007, vol. 25, pp. 3014–3017.PubMedCrossRefGoogle Scholar
  88. 88.
    Golovkin, M., Spitsin, S., Andrianov, V., Smirnov, Y., Xiao, Y., Pogrebnyak, N., Markley, K., Brodzik, R., Gleba, Y., Isaacs, S.N., and Koprowski, H., Smallpox subunit vaccine produced in planta confers protection in mice, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 6864–6869.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Massa, S., Franconi, R., Brandi, R., Muller, A., Mett, V., Yusibov, V., and Venuti, A., Anti-cancer activity of plant-produced HPV16 E7 vaccine, Vaccine, 2007, vol. 25, pp. 3018–3021.PubMedCrossRefGoogle Scholar
  90. 90.
    Yang, C.D., Liao, J.T., Lai, C.Y., Jong, M.H., Liang, C.M., Lin, Y.L., Lin, N.S., Hsu, Y.H., and Liang, S.M., Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes, BMC Biotechnol., 2007, vol. 7, article62.Google Scholar
  91. 91.
    Meyers, A., Chakauya, E., Shephard, E., Tanzer, F.L., Maclean, J., Lynch, A., Williamson, A.L., and Rybicki, E.P., Expression of HIV-1 antigens in plants as potential subunit vaccines, BMC Biotechnol., 2008, vol. 8, article53.Google Scholar
  92. 92.
    Shoji, Y., Chichester, J.A., Bi, H., Musiychuk, K., de la Rosa, P., Goldschmidt, L., Horsey, A., Ugulava, N., Palmer, G.A., Mett, V., and Yusibov, V., Plant-expressed HAas a seasonal influenza vaccine candidate, Vaccine, 2008, vol. 26, pp. 2930–2934.PubMedCrossRefGoogle Scholar
  93. 93.
    Shoji, Y., Farrance, C.E., Bi, H., Shamloul, M., Green, B., Manceva, S., Rhee, A., Ugulava, N., Roy, G., Musiychuk, K., Chichester, J.A., Mett, V., and Yusibov, V., Immunogenicity of hemagglutinin from A/Barheaded Goose/Qinghai/1A/05 and A/Anhui/1/05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants, Vaccine, 2009, vol. 27, pp. 3467–3470.PubMedCrossRefGoogle Scholar
  94. 94.
    D’Aoust, M.A., Lavoie, P.O., Couture, M.M., Trepanier, S., Guay, J.M., Dargis, M., Mongrand, S., Landry, N., Ward, B.J., and Vezina, L.P., Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice, Plant Biotechnol. J., 2008, vol. 6, no. 9, pp. 930–940.PubMedCrossRefGoogle Scholar
  95. 95.
    Hamorsky, K.T., Kouokam, J.C., Bennett, L.J., Baldauf, K.J., Kajiura, H., Fujiyama, K., and Matoba, N., Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks, PLoS Negl. Trop. Dis., 2013, vol. 7, p. e2046.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chichester, J.A., Manceva, S.D., Rhee, A., Coffin, M.V., Musiychuk, K., Mett, V., Shamloul, M., Norikane, J., Streatfield, S.J., and Yusibov, V., A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores, Hum. Vaccin. Immunother., 2013, vol. 9, pp. 544–552.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Thuenemann, E.C., Meyers, A.E., Verwey, J., Rybicki, E.P., and Lomonossoff, G.P., A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles, Plant Biotechnol. J., 2013, vol. 11, no. 7, pp. 839–846.PubMedCrossRefGoogle Scholar
  98. 98.
    Pillet, S., Racine, T., Nfon, C., Di Lenardo, T.Z., Babiuk, S., Ward, B.J., Kobinger, G.P., and Landry, N., Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets, Vaccine, 2015, vol. 33, no. 46, pp. 6282–6289.PubMedCrossRefGoogle Scholar
  99. 99.
    Hiatt, A., Cafferkey, R., and Bowdish, K., Production of antibodies in transgenic plants, Nature, 1989, vol. 342, pp. 76–78.PubMedCrossRefGoogle Scholar
  100. 100.
    Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., and Lehner, T., Generation and assembly of secretory antibodies in plants, Science, 1995, vol. 268, pp. 716–719.PubMedCrossRefGoogle Scholar
  101. 101.
    Hiatt, A. and Pauly, M., Monoclonal antibodies from plants: a new speed record, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 14645–14646.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mori, M., Fujihara, N., Mise, K., and Furusawa, I., Inducible high-level mRNA amplification system by viral replicase in transgenic plants, Plant J., 2001, vol. 27, no. 1, pp. 79–86.PubMedCrossRefGoogle Scholar
  103. 103.
    Mallory, A.C., Parks, G., Endres, M.W., Baulcombe, D., Bowman, L.H., Pruss, G.J., and Vance, V.B., The amplicon-plus system for high-level expression of transgenes in plants, Nat. Biotechnol., 2002, vol. 20, pp. 622–625.PubMedCrossRefGoogle Scholar
  104. 104.
    Padidam, M., Chemically regulated gene expression in plants, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 169–177.PubMedCrossRefGoogle Scholar
  105. 105.
    Padidam, M., Gore, M., Lu, D.L., and Smirnova, O., Chemical-inducible, ecdysone receptor-based gene expression system for plants, Transgenic Res., 2003, vol. 12, pp. 101–109.PubMedCrossRefGoogle Scholar
  106. 106.
    Dohi, K., Nishikiori, M., Tamai, A., Ishikawa, M., Meshi, T., and Mori, M., Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells, Arch. Virol., 2006, vol. 151, pp. 1075–1084.PubMedCrossRefGoogle Scholar
  107. 107.
    Sudarshana, M.R., Plesha, M.A., Uratsu, S.L., Falk, B.W., Dandekar, A.M., Huang, T.K., and McDonald, K.A., A chemically inducible cucumber mosaic virus amplicon system for expression of heterologous proteins in plant tissues, Plant Biotechnol. J., 2006, vol. 4, pp. 551–559.PubMedGoogle Scholar
  108. 108.
    Zhang, X. and Mason, H., Bean yellow dwarf virus replicons for high-level transgene expression in transgenic plants and cell cultures, Biotechnol. Bioeng., 2006, vol. 93, no. 2, pp. 271–279.PubMedCrossRefGoogle Scholar
  109. 109.
    Tremblay, A., Beauchemin, C., Seguin, A., and Laliberte, J.F., Reactivation of an integrated disabled viral vector using a Cre–loxP recombination system in Arabidopsis thaliana, Transgenic Res, 2007, vol. 16, pp. 213–222.PubMedCrossRefGoogle Scholar
  110. 110.
    Plesha, M.A., Huang, T.K., Dandekar, A.M., Falk, B.W., and McDonald, K.A., High-level transient production of a heterologous protein in plants by optimizing induction of a chemically inducible viral amplicon expression system, Biotechnol. Prog, 2007, vol. 23, pp. 1277–1285.PubMedCrossRefGoogle Scholar
  111. 111.
    Plesha, M.A., Huang, T.K., Dandekar, A.M., Falk, B.W., and McDonald, K.A., Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system, Biotechnol. Prog., 2009, vol. 25, pp. 722–734.PubMedCrossRefGoogle Scholar
  112. 112.
    Dujovny, G., Valli, A., Calvo, M., and Garcia, J.A., A temperature-controlled amplicon system derived from plum pox potyvirus, Plant Biotechnol. J., 2009, vol. 7, no. 1, pp. 49–58.PubMedCrossRefGoogle Scholar
  113. 113.
    Werner, S., Breus, O., Symonenko, Y., Marillonnet, S., and Gleba, Y., High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 34, pp. 14061–14066.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Palacpac, N.Q., Yoshida, S., Sakai, H., Kimura, Y., Fujiyama, K., Yoshida, T., and Seki, T., Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 4692–4697.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bakker, H., Bardor, M., Molthoff, J.W., Gomord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., and Bosch, D., Galactose-extended glycans of antibodies produced by transgenic plants, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 2899–2904.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cox, K.M., Sterling, J.D., Regan, J.T., Gasdaska, J.R., Frantz, K.K., Peele, C.G., Black, A., Passmore, D., Moldovan-Loomis, C., Srinivasan, M., Cuison, S., Cardarelli, P.M., and Dickey, L.F., Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor, Nat. Biotechnol., 2006, vol. 24, pp. 1591–1597.PubMedCrossRefGoogle Scholar
  117. 117.
    Schaehs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T., and Steinkellner, H., Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern, Plant Biotechnol. J., 2007, vol. 5, pp. 657–663.CrossRefGoogle Scholar
  118. 118.
    Strasser, R., Stadlmann, J., Schahs, M., Stiegler, G., Quendler, H., Mach, L., Glossl, J., Weterings, K., Pabst, M., and Steinkellner, H., Generation of glycoengineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure, Plant Biotechnol. J., 2008, vol. 6, pp. 392–402.PubMedCrossRefGoogle Scholar
  119. 119.
    Decker, E.L. and Reski, R., Current achievements in the production of complex biopharmaceuticals with moss bioreactors, Bioprocess Biosyst. Eng., 2008, vol. 31, pp. 3–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Kallolimath, S., Castilho, A., Strasser, R., Grunwald-Gruber, C., Altmann, F., Strubl, S., Galuska, C.E., Zlatina, K., Galuska, S.P., Werner, S., Thiesler, H., Werneburg, S., Hildebrandt, H., Gerardy-Schahn, R., and Steinkellner, H., Engineering of complex protein sialylation in plants, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 34, pp. 9498–9503.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Roque, A.C., Lowe, C.R., and Taipa, M.A., Antibodies and genetically engineered related molecules: production and purification, Biotechnol. Prog., 2004, vol. 20, pp. 639–654.PubMedCrossRefGoogle Scholar
  122. 122.
    Vollenkle, C., Weigert, S., Ilk, N., Egelseer, E., Weber, V., Loth, F., Falkenhagen, D., Sleytr, U.B., and Sara, M., Construction of a functional S-layer fusion protein comprising an immunoglobulin G-binding domain for development of specific adsorbents for extracorporeal blood purification, Appl. Environ. Microbiol., 2004, vol. 70, pp. 1514–1521.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nomellini, J.F., Duncan, G., Dorocicz, I.R., and Smit, J., S-layer-mediated display of the immunoglobulin g-binding domain of streptococcal protein G on the surface of Caulobacter crescentus: development of an immunoactive reagent, Appl. Environ. Microbiol., 2007, vol. 73, pp. 3245–3253.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kushwaha, A., Chowdhury, P.S., Arora, K., Abrol., S., and Chaudhary, V.K., Construction and characterization of M13 bacteriophages displaying functional IgGbinding domains of staphylococcal protein A, Gene, 1994, vol. 151, pp. 45–51.PubMedCrossRefGoogle Scholar
  125. 125.
    Cao, Y., Zhang, Q., Wang, C., Zhu, Y., and Bai, G., Preparation of novel immunomagnetic cellulose microspheres via cellulose binding domain-protein A linkage and its use for the isolation of interferon alpha-2b, J. Chromatogr., A, 2007, vol. 1149, pp. 228–235.CrossRefGoogle Scholar
  126. 126.
    Qiu, X., Wong, G., Audet, J., Bello, A., FeRNAndo, L., Alimonti, J.B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson, A., Morton, J., Swope, K., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Pauly, M.H., Velasco, J., Pettitt, J., Olinger, G.G., Whaley, K., Xu, B., Strong, J.E., Zeitlin, L., and Kobinger, G.P., Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp, Nature, 2014, vol. 514, pp. 47–53.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Zeitlin, L., Whaley, K.J., Olinger, G.G., Jacobs, M., Gopal, R., Qiu, X., and Kobinger, G.P., Antibody therapeutics for Ebola virus disease, Curr. Opin. Virol., 2016, vol. 17, pp. 45–49.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tusé, D., Ku, N., Bendandi, M., Becerra, C., Collins, R.J., Langford, N., Sancho, S.I., López-Díaz de Cerio, A., Pastor, F., Kandzia, R., Thieme, F., Jarczowski, F., Krause, D., Ma, J.K., Pandya, S., Klimyuk, V., Gleba, Y., and Butler-Ransohoff, J.E., Clinical safety and immunogenicity of tumor-targeted, plant-made Id-KLH conjugate vaccines for follicular lymphoma, Biomed. Res. Int., 2015, article ID648143.Google Scholar
  129. 129.
    American Cancer Society, ACS Cancer Facts and Figures 2011, American Cancer Society, 2014.Google Scholar
  130. 130.
    Kwak, L.W., Campbell, M.J., Czerwinski, D.K., Hart, S., Miller, R.A., and Levy, R., Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors, New Engl. J. Med., 1992, vol. 327, no. 17, pp. 1209–1215.PubMedCrossRefGoogle Scholar
  131. 131.
    Gould, L.H., Bopp, C., Strockbine, N., Atkinson, R., Baselski, V., Body, B., Carey, R., Crandall, C., Hurd, S., Kaplan, R., Neill, M., Shea, S., Somsel, P., Tobin-D’Angelo, M., Griffin, P.M., and Gerner-Smidt, P., Centers for Disease Control and Prevention (CDC). Recommendations for diagnosis of Shiga toxin-producing Escherichia coli infections by clinical laboratories, MMWR Recomm. Rep., 2009, vol. 58, no. RR-12, pp. 1–14.PubMedGoogle Scholar
  132. 132.
    Cascales, E., Buchanan, S.K., Duche, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S., and Cavard, D., Colicin biology, Microbiol. Mol. Biol. Rev., 2007, vol. 71, no. 1, pp. 158–229.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Nomad Bioscience GmbHHalleGermany
  2. 2.Icon Genetics GmbHHalleGermany

Personalised recommendations