Cytology and Genetics

, Volume 48, Issue 6, pp 383–391 | Cite as

Determination of molecular glioblastoma subclasses on the basis of analysis of gene expression

  • V. V. DmitrenkoEmail author
  • A. V. Iershov
  • P. I. Stetsyuk
  • A. P. Lykhovid
  • Yu. P. Laptin
  • D. R. Schwartz
  • A. A. Mekler
  • V. M. Kavsan


Two glioblastoma groups, which are distinguished from each other by expression level of 416 genes (p ≤ 0.05), were determined using a mathematical model of linear Boolean programming on the basis of gene expression data, obtained by microarray analysis of the glioblastomas and available in Gene Expression Omnibus (GEO) data base. The expression level of 15 genes was more than two-fold higher in the first group of glioblastoma (80 samples) in comparison with the second group (144 samples) and 401 genes and more than two-fold lower as compared to the second group. Ten of 15 genes, which expression level prevailed in the first group, encode the proteins involved in cell cycle regulation and cell proliferation. A significant percentage of 401 genes are the genes that encode proteins involved in the functioning of neural cells and participating in the processes such as synaptic transmission, neurogenesis, the formation of myelin sheath, axon formation. Kohonen map, built on the basis of the data of 15 genes with prevailed expression in the first group and 60 (of 401) genes, whose expression level elevated in the second group, confirmed the existence of two glioblastoma groups with specific gene expression profiles. Distribution of the glioblastomas into two groups may reflect two pathways of astrocytic glioma development, one of which leads to the formation of tumors with higher levels of gene expression, which protein products are involved in cell cycle regulation and proliferation. On the other hand, the existence of two molecular variants may reflect different states of glioblastoma progression.


gene expression signature glioblastoma tumors classification “proliferative subtype” “proneural subtype” 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van’t Veer, L.J., Dai, H., van de Vijver, M.J., et al., Gene expression profiling predicts clinical outcome of breast cancer, Nature, 2002, vol. 415, no. 6871, pp. 530–536.CrossRefGoogle Scholar
  2. 2.
    Chang, H.Y., Nuyten, D.S., Sneddon, J.B., et al., Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 10, pp. 3738–3743.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wang, Y., Klijn, J.G., Zhang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer, Lancet, 2005, vol. 365, no. 9460, pp. 671–679.PubMedCrossRefGoogle Scholar
  4. 4.
    Paik, S., Shak, S., Tang, G., et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer, N. Engl. J. Med., 2004, vol. 351, no. 27, pp. 2817–2826.PubMedCrossRefGoogle Scholar
  5. 5.
    Tian, S., Roepman, P., Van’t Veer, L.J., et al., Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer, Biomarker Insights, 2010, vol. 5, pp. 129–138.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Conlin, A.K. and Seidman, A.D., Use of the Oncotype DX 21-gene assay to guide adjuvant decision making in early-stage breast cancer, Mol. Diagn. Ther., 2007, vol. 11, no. 6, pp. 355–360.PubMedCrossRefGoogle Scholar
  7. 7.
    Ma, X.J., Hilsenbeck, S.G., Wang, W., et al., The HOXB13: IL17BR expression index is a prognostic factor in early-stage breast cancer, J. Clin. Oncol., 2006, vol. 24, no. 28, pp. 4611–4619.PubMedCrossRefGoogle Scholar
  8. 8.
    Eroles, P., Bosch, A., Perez-Fidalgo, J.A., and Lluch, A., Molecular biology in breast cancer: intrinsic subtypes and signaling pathways, Cancer Treat. Rev., 2012, vol. 38, no. 6, pp. 698–707.PubMedCrossRefGoogle Scholar
  9. 9.
    Demuth, T., Rennert, J.L., Hoelzinger, D.B., et al., Glioma cells on the run—the migratory transcriptome of 10 human glioma cell lines, BMC Genome, 2008, vol. 9, p. 54.CrossRefGoogle Scholar
  10. 10.
    Li, A., Walling, J., Ahn, S., et al., Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes, Cancer Res., 2009, vol. 69, no. 5, pp. 2091–2099.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Phillips, H.S., Kharbanda, S., Chen, R., et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, 2006, vol. 9, no. 3, pp. 157–173.PubMedCrossRefGoogle Scholar
  12. 12.
    Colman, H., Zhang, L., Sulman, E.P., et al., A multi-gene predictor of outcome in glioblastoma, Neuro-Oncology, 2010, vol. 12, no. 1, pp. 49–57.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    de Tayrac, M., Aubry, M., Sankali, S., et al., A 4-gene signature associated with clinical outcome in high-grade gliomas, Clin. Cancer Res., 2011, vol. 17, no. 2, pp. 317–327.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, Y.W., Koul, D., Kim, S.H., et al., Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis, Neuro-Oncology, 2013, vol. 15, no. 7, pp. 829–839.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yu, J.X., Sieuwerts, A.M., Zhang, Y., et al., Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer, BMC Cancer, 2007, vol. 7, p. 182.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bandres, E., Malumbres, R., Cubedo, E., et al., A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes’ B colon cancer patients, Oncol. Rep., 2007, vol. 17, pp. 1089–1094.PubMedGoogle Scholar
  17. 17.
    Barrier, A., Boelle, P.Y., Roser, F., et al., Stage II colon cancer prognosis prediction by tumor gene expression profiling, J. Clin. Oncol., 2006, vol. 24, pp. 4685–4691.PubMedCrossRefGoogle Scholar
  18. 18.
    Eschrich, S., Yang, I., Bloom, G., et al., Molecular staging for survival prediction of colorectal cancer patients, J. Clin. Oncol., 2005, vol. 23, pp. 3526–3535.PubMedCrossRefGoogle Scholar
  19. 19.
    Lin, Y.H., Friederichs, J., Black, M.A., et al., Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer, Clin. Cancer Res., 2007, vol. 13, pp. 498–507.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith, J.J., Deane, N.G., Wu, F., et al., Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer, Gastroenterology, 2010, vol. 138, no. 3, pp. 958–968.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wang, Y.X., Jatkoe, T., Zhang, Y., et al., Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer, J. Clin. Oncol., 2004, vol. 22, no. 9, pp. 1564–1571.PubMedCrossRefGoogle Scholar
  22. 22.
    Shi, M., Beauchamp, R.D., and Zhang, B., A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients, PLoS One, 2012, vol. 7, no. 7, p. 7.Google Scholar
  23. 23.
    Louis, D.N., Ohgaki, H., Wiestler, O.D., et al., The 2007 WHO classification of tumours of the central nervous system, Acta Neuropathol., 2007, vol. 114, no. 2, pp. 97–109.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Uoll, L., Kristiansen, T., and Orvant, D., Programming Perl, Moscow: Symbol-Plus, 2008.Google Scholar
  25. 25.
    Hartigan, J. and Wong, M., Algorithm as 136: A k-means clustering algorithm, J. R. Stat. Soc. Ser., 1979, vol. 28, no. 1, pp. 100–108.Google Scholar
  26. 26.
    Charrad, M., Ghazzali, N., Boiteau, V., and Nikhafs, A., Bclust package: finding the relevant number of clusters in database.
  27. 27.
    Calinski, T. and Harabasz, J., A dendrite method for cluster analysis, Commun. Stat., 1974, vol. 3, no. 1, pp. 1–27.Google Scholar
  28. 28.
    Duda, R. and Hart, P., Pattern Classification and Scene Analysis, New York: Wiley, 1973.Google Scholar
  29. 29.
    Hubert, L. and Levin, J., A general statistical framework for assessing categorical clustering in free recall, Psychol. Bull., 1976, vol. 83, no. 6, pp. 1072–1080.CrossRefGoogle Scholar
  30. 30.
    Baker, F. and Hubert, L., Measuring the power of hierarchical cluster analysis, J. Amer. Stat. Ass., 1975, vol. 70, no. 349, pp. 31–38.CrossRefGoogle Scholar
  31. 31.
    Beake, E.M.L., Cluster Analysis, London: Sci. Control Syst., 1969.Google Scholar
  32. 32.
    Sarle, W., Cubic Clustering Criterion SAS Technical Report A, p. 108.Google Scholar
  33. 33.
    Milligan, G., An examination of the effect of six types of error perturbation on fifteen clustering algorithms, Psychometriak, 1980, vol. 45, no. 3, pp. 325–342.CrossRefGoogle Scholar
  34. 34.
    Milligan, G., A Monte Carlo study of thirty internal criterion measures for cluster analysis, Psychometrika, 1981, vol. 46, no. 2, pp. 187–199.CrossRefGoogle Scholar
  35. 35.
    Milligan, G. and Copper, M., An examination of procedures for determining the number of clusters in a data set, Psychometrika, 1985, vol. 50, no. 2, pp. 159–179.CrossRefGoogle Scholar
  36. 36.
    Davies, D.L. and Bouldin, D.W., A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 1979, vol. 1, no. 2, pp. 224–227.PubMedCrossRefGoogle Scholar
  37. 37.
    Frey, T. and Van Groenewoud, H., A cluster analysis of the D-squared matrix of white spruce stands in Saskatchewan based on the maximum-minimum principle, J. Ecol., 1972, vol. 60, no. 3, pp. 873–886.CrossRefGoogle Scholar
  38. 38.
    Ratkowsky, D. and Lance, G., A criterion for determining the number of groups in a classification, Austral. Comp. J., 1978, vol. 10, pp. 115–117.Google Scholar
  39. 39.
    Scott, A. and Symons, M., Clustering methods based on likelihood ratio criteria, Biometrics, 1971, vol. 27, no. 2, pp. 387–397.CrossRefGoogle Scholar
  40. 40.
    Marriott, F., Practical problems in a method of cluster analysis, Biometrics, 1971, vol. 27, no. 3, pp. 501–514.PubMedCrossRefGoogle Scholar
  41. 41.
    Ball, G. and Hall, D., ISODATA, A Novel Method of Data Analysis and Pattern Classification, Stanford Res. Inst., 1965.Google Scholar
  42. 42.
    Friedman, H. and Rubin, J., On some invariant criteria for grouping data, J. Am. Stat. Assoc., 1967, vol. 62, no. 320, pp. 1159–1178.CrossRefGoogle Scholar
  43. 43.
    McClain, J. and Rao, V., Clustisz: a program to test for the quality of clustering of a set of objects, J. Market. Res., 1975, vol. 16, pp. 545–551.Google Scholar
  44. 44.
    Krzanowski, W. and Lai, Y., A criterion for determining the number of groups in a data set using sum-of-squares clustering, Biometrics, 1988, vol. 44, no. 1, pp. 23–24.CrossRefGoogle Scholar
  45. 45.
    Kaufman, L. and Rousseeuw, P., Finding Groups in Data: An Introduction to Cluster Analysis, Hoboken: Wiley, 2009.Google Scholar
  46. 46.
    Tibshirani, R., Walther, G., and Hastie, T., Estimating the number of clusters in a data set via the gap statistic, J. R. Stat. Soc., B, 2001, vol. 63, no. 2, pp. 411–423.CrossRefGoogle Scholar
  47. 47.
    Dunn, J., Well-separated clusters and optimal fuzzy partitions, J. Cybernet., 1974, vol. 4, no. 1, pp. 95–104.CrossRefGoogle Scholar
  48. 48.
    Stetsyuk, P.I., Berezovs’kii, O.A., Zhurbenko, M.G., and Kropotov, D.O., Uneven Optimization Methods in Special Classification Problems, Preprint of the Glushkov Institute of Cybernetics, Kyiv, 2009.Google Scholar
  49. 49.
    Freije, W.A., Castro-Vargas, F.E., Fang, Z., et al., Gene expression profiling of gliomas strongly predicts survival, Cancer Res., 2004, vol. 64, no. 18, pp. 6503–6510.PubMedCrossRefGoogle Scholar
  50. 50.
    Ge, X., Yamamoto, S., Tsutsumi, S., et al., Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues, Genome, 2005, vol. 86, no. 2, pp. 127–141.CrossRefGoogle Scholar
  51. 51.
    Sun, L., Hui, A.M., Su, Q., et al., Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain, Cancer Cell, 2006, vol. 0, no. 4, pp. 287–300.CrossRefGoogle Scholar
  52. 52.
    Liu, T., Papagiannakopoulos, T., Puskar, K., et al., Detection of a microRNA signal in an in vivo expression set of mRNAs, PLoS One, 2007, vol. 2, no. 8, p. e804.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Su, A.I., Wiltshire, T., Batalov, S., et al., A gene atlas of the mouse and human protein-encoding transcriptomes, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 16, pp. 6062–6067.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Steinhaus, H., Sur la division des corps materiels en parties, Bull. Acad. Pol. Sci., 1956, vol. 4, pp. 801–804.Google Scholar
  55. 55.
    Huse, J.T., Phillips, H.S., and Brennan, C.W., Molecular sub-classification of diffuse gliomas: seeing order in the chaos, Glia, 2011, vol. 59, no. 8, pp. 1190–1199.PubMedCrossRefGoogle Scholar
  56. 56.
    Verhaak, R.G., Hoadley, K.A., Purdom, E., et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, 2010, vol. 17, no. 1, pp. 98–110.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Paugh, B.S., Qu, C., Jones, C., et al., Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease, J. Clin. Oncol., 2010, vol. 28, pp. 3061–3068.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Mekler, A.A. and Shvarts, D.R., Selection of variables for the best quality classification of objects, in Tr. XIII Vseros. nauchno-tekhn. konf. “Neiroinformatika-2011” (Trans. XIII All-Russ. Sci.-Techn. Conf. “Neiroinformatika-2011”), Moscow, 2010, part 1, pp. 136–143.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • V. V. Dmitrenko
    • 1
    Email author
  • A. V. Iershov
    • 1
  • P. I. Stetsyuk
    • 2
  • A. P. Lykhovid
    • 2
  • Yu. P. Laptin
    • 2
  • D. R. Schwartz
    • 3
  • A. A. Mekler
    • 3
  • V. M. Kavsan
    • 1
  1. 1.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Bonch-Bruevich Saint Petersburg State University of TelecommunicationsSt. PetersburgRussia

Personalised recommendations