Cytology and Genetics

, Volume 48, Issue 5, pp 302–307 | Cite as

Plant regeneration from hairy roots and calluses of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L.

  • L. G. Lioshina
  • O. V. Bulko


Plants regenerated from hairy root culture and calluses of foxglove purple and periwinkle have been obtained. It was found that organogenesis in hairy root culture occurs spontaneously on hormone-free medium but with varying efficiency. The frequency of direct shoot formation from root cultures was up to 60% in Digitalis and 3.7% in Vinca. The addition of 1 mg/L BA, 0.1 mg/L NAA, and 5% sucrose to B5 medium increases regenerative capacity of periwinkle up to 19.1%. Regenerated plants showed morphological features typically seen in Ri-transgenic plants. They include growth and plagiotropism of the root system, increased shoot formation, changed leaf morphology, and short internodes.


hairy roots plant regeneration Vinca minor L. Digitalis purpurea L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuzovkina, I. and Schneider, B., Genetically trans-formed root cultures-generation, properties and application in plant sciences, in Progress in Botany, Esser, K. et al., Eds., Berlin: Springer-Verlag, 2006, vol. 67, pp. 275–314.CrossRefGoogle Scholar
  2. 2.
    Kuzovkina, I.N. and Vdovitchenko, M.Yu., Genetically transformed roots as a model system for studying physiological and biochemical processes in intact roots, Russ. J. Plant Physiol., 2011, vol. 58, no. 5, pp. 941–948.CrossRefGoogle Scholar
  3. 3.
    Casanova, E., Trillas, M.I., Moysset, L., and Vainstein, A., Influence of rol genes in floriculture, Biotech. Adv., 2005, vol. 23, no. 1, pp. 3–39.CrossRefGoogle Scholar
  4. 4.
    Christey, M.C. and Braun, R.H., Production of hairy root cultures and transgenic plants by Agrogbacterium rhizogenes-mediated transformation, Meth. Mol. Biol., 2005, vol. 286, pp. 47–60.Google Scholar
  5. 5.
    Christey, M.C., Use of Ri-mediated transformation for production of transgenic plants, In Vitro Cell Dev. Biol. Plant., 2001, vol. 37, pp. 687–700.CrossRefGoogle Scholar
  6. 6.
    Lioshina, L.G., Bulko, O.V., and Galkin, A.P., Obtaining and characterization of callus and suspension cultures of periwinkle Vinca minor, in Factors of Experimental Evolution of Organisms, Kyiv: Logos, 2009, vol. 7, pp. 161–166.Google Scholar
  7. 7.
    Lioshina, L.G., Features of cultivation and growth characteristics of callus suspension culture of Digitalis prupurea L. cells, in Plant Physiology: Problems and Prospects, Kyiv: Logos, 2009, vol. 2, pp. 607–612.Google Scholar
  8. 8.
    Lioshina, L.G. and Bulko, O.V., Agrobacterium rhizogenes-mediated transformation and regeneration of two plant species from the family Apycynaceae Fiziol. Biokhim. Kul’tur. Roslin, 2011, vol. 43, no. 6, pp. 533–539.Google Scholar
  9. 9.
    Murashige, I. and Scoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.CrossRefGoogle Scholar
  10. 10.
    Gamborg, O.L. and Eveleigh, D.E., Culture methods and detection of glucanases in cultures of wheat and barley, Can. J. Biochem., 1968, vol. 46, no. 5, pp. 417–421.PubMedCrossRefGoogle Scholar
  11. 11.
    Markovskaya, E.F., Sysoeva, M.I., Trofimova, S.A., and Kurets, V.K., Matematicheskie metody opredeleniya nekotorykh biometricheskikh pokazatelei u rastenii (Mathematical Methods for Determination of Certain Biometric Indices in Plants), Petrozavodsk, 1988.Google Scholar
  12. 12.
    Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1990.Google Scholar
  13. 13.
    Tanaka, N., Takao, M., and Matsumoto, T., Agrobacterium rhizogenes-mediated transformation and regeneration of Vinca moinor L., Plant Tissue Cult. Lett., 1994, vol. 11, no. 3, pp. 191–198.CrossRefGoogle Scholar
  14. 14.
    Feng, B., Zhao, C.H., and Wang, G.L., Transformation of Cucumis sativus by A. rhizogenes and regeneration of transformed hairy root, J. Liaoning Norm. Univ., 2000, vol. 23, pp. 171–174.Google Scholar
  15. 15.
    Pradel, H., Dumke-Lebmann, U., Dietrich, B., and Luckner, M., Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration, J. Plant. Physiol., 1997, vol. 151, pp. 209–215.CrossRefGoogle Scholar
  16. 16.
    Koga, M., Hirashima, K., and Nakahara, T., The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants, Plant Biotechnol., 2000, vol. 17, no. 2, pp. 99–104.CrossRefGoogle Scholar
  17. 17.
    Dinkar, V.P., White, F.F., Nester, E.W., and Gordon, M.P., rolA Locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants, Genes Dev., 1988, vol. 2, pp. 688–697.CrossRefGoogle Scholar
  18. 18.
    Schmulling, T., Schell, J., and Spena, A., Single genes from Agrobacterium rhizogenes influence plant development, EMBO J., 1988, vol. 7, pp. 2621–2629.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Koltunow, A.M., Johnson, S.D., and Lynch, M., Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixes initiates at higher frequency, Planta, 2001, vol. 214, pp. 196–205.PubMedCrossRefGoogle Scholar
  20. 20.
    Boase, M.R., Winefield, C.S., and Lill, T.A., Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype, In Vitro Cell. Dev. Biol., 2004, vol. 40, pp. 46–50.CrossRefGoogle Scholar
  21. 21.
    Spena, A., Schmiilling, T., Konez, C., and Schell, J.S., Independent and synergistic activity of rol A, B and C loci in stimulation of abnormal growth in plants, EMBO J., 1987, vol. 13, no. 13, pp. 3891–3899.Google Scholar
  22. 22.
    Binns, A.N. and Costantino, P., The Agrobacterium oncogenes, in The Rhizobiaceae, Dordrecht: Kluwer Press, 1998, pp. 251–266.CrossRefGoogle Scholar
  23. 23.
    Meyer, A.D., Tempé, J., and Costantino, Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes, in Plant-Microbe Interactions, St. Paul: APS Press, 2000, pp. 93–139.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations