Cytology and Genetics

, Volume 48, Issue 4, pp 218–226 | Cite as

Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using Lba4404 strain harboring binary vector pBi2E with dsRNA-suppressor of proline dehydrogenase gene

  • O. M. TishchenkoEmail author
  • A. G. Komisarenko
  • S. I. Mykhalska
  • L. E. Sergeeva
  • N. I. Adamenko
  • B. V. Morgun
  • A. V. Kochetov


To estimate the efficiency of proline dehydrogenase gene suppression aimed at increasing sunflower (Helianthus annuus L.) tolerance level to water deficiency and salinity, we employed the LBA4404 strain harboring pBi2E with double-stranded RNA-suppressor, produced based on the ProDH1 gene of Arabidopsis. Techniques for Agrobacterium-mediated transformation in vitro and in planta during fertilization of sunflower have been proposed. The genotype-dependent integration of T-DNA in the sunflower genome was demonstrated. PCR-analysis showed that ProDH1 is present in the genomes of inbred lines transformed in planta, as well as in T1- and T2-generations. Significantly, increased levels of accumulation of free L-proline during early stages of in vitro cultivation under normal conditions were demonstrated in transgenic regenerants. The application of lethal doses of stressors (0.4 M mannitol and 2.0% sea salts) caused increase of L-proline level in transgenic regenerants and its decline during the recovery period. This data indicates the effectiveness of suppression of the sunflower ProDH1 gene for increased osmotolerance.


sunflower (Helianthus annuus L.) Agrobacterium-mediated transformation in vitro and in planta dsRNA-suppressor of proline dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kavi, Kishor P.B., Sangam, S., Amrutha, R.N., et al., Regulation of proline bioxynthesis, degradation, uptake and transport in higher plants: its implication in plant growth and abiotic stress tolerance, Curr. Sci., 2005, vol. 88, no. 3, pp. 424–438.2.Google Scholar
  2. 2.
    Maggio, A., Miyazaki, S., Veronese, P., et al., Does proline accumulation play an active role in stress-induced growth reduction? Plant J., 2002, vol. 3, no. 16, pp. 699–712.CrossRefGoogle Scholar
  3. 3.
    Szabados, L. and Savoure, A., Proline: a multifunctional amino acid, Trends Plant Sci., 2009, vol. 15, no. 2, pp. 89–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Peng, Z., Lu, Q., and Verna, D.P., Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants, Mol. Gen. Genet., 1996, no. 3, pp. 334–341.Google Scholar
  5. 5.
    Nanjo, T., Kobayashi, M., Yoshiba, Y., et al., Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana, FEBS Lett., 1999, vol. 461, pp. 205–210.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu, L., Fan, Z., Guo, L., et al., Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice, Chinese Sci. Bull., 2003, vol. 48, no. 23, pp. 2594–2600.CrossRefGoogle Scholar
  7. 7.
    Kochetov, A.V., Titov, S.E., Kolodyazhnaya, Ya.S., et al., Tobacco transformants bearing antisense suppressor of proline dehydrogenase gene, are characterized by higher proline content and cytoplasm osmotic pressure, Russ. J. Genet., 2004, vol. 40, no. 2, pp. 216–218.CrossRefGoogle Scholar
  8. 8.
    Vendruscolo, E.C., Schuster, I., Pileggi, M., et al., Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat, J. Plant Physiol., 2007, vol. 164, no. 10, pp. 1367–1376.PubMedCrossRefGoogle Scholar
  9. 9.
    Karthikeyan, A., Pandian, S.K., and Ramesh, T., Transgenic indica rice cv. ADT 43 expressing a Δ1-pyroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance, Plant Cell Tiss. Organ Cult., 2011, vol. 107, no. 3, pp. 383–395.CrossRefGoogle Scholar
  10. 10.
    Ibragimova, Ya.S., Gerasimova, S.V., and Kochetov, A.V., Partial suppression of gene encoding proline dehydrogenase enhances plant tolerance to various abiotic stresses, Russ. J. Plant Physiol., 2012, vol. 59, pp. 88–96.Google Scholar
  11. 11.
    Mani, S., Van de Cotte, B., Van Montagu, M., and Cebruggen, N., Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis, Plant Physiol., 2002, vol. 128, pp. 73–83.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Tateishi, Y., Nakagawa, T., and Esaka, M., Osmotolerance and growth stimulation of transgenic tobacco cells accumulating free proline by dehydrogenase expression with double-stranded RNA interference technique, Physiol. Plant., 2005, vol. 125, no. 2, pp. 224–234.CrossRefGoogle Scholar
  13. 13.
    Titov, S.E., Obtaining genetically modified tobacco (Nicotiana tabacum L.) plants expressing an antisense suppressor of the proline dehydrogenase gene, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Novosibirsk, 2008.Google Scholar
  14. 14.
    Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K., A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in plotline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis, Plant Cell, 1996, vol. 8, pp. 1323–1335.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Servet, C., Ghelis, T., Richard, L., et al., Proline dehydrogenase: a key enzyme in controlling cellular homeostasis, Front Biosci., 2012, vol. 1, no. 17, pp. 607–620.CrossRefGoogle Scholar
  16. 16.
    Miller, G., Stein, H., Honig, A., et al., A responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate proline accumulation, Planta, 2005, vol. 222, no. 1, pp. 70–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Dibrá, J., Vanková, R., Hoylová, M., et al., Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery, J. Plant Physiol., 2011, vol. 168, no. 13, pp. 1588–1597.CrossRefGoogle Scholar
  18. 18.
    Sharma, S. and Verslues, P.E., Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery, Plant, Cell Environ., 2010, vol. 33, no. 11, pp. 1838–1851.CrossRefGoogle Scholar
  19. 19.
    Satoh, R., Nakashima, K., Seki, M., et al., ACTCAT a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase gene in Arabidopsis, Plant Physiol., 2002, vol. 130, no. 3, pp. 709–719.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cecchini, N.M., Monteoliva, M.I., and Alvarez, M.E., Proline dehydrogenase is a positive regulator of cell death in different kingdoms, Plant Signal Behav., 2011, vol. 6, no. 8, pp. 1195–1197.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ribarits, A., Abdullaev, A., Tashpulatov, A., et al., Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development, Planta, 2007, vol. 225, no. 5, pp. 1313–1324.PubMedCrossRefGoogle Scholar
  22. 22.
    Malone-Schoneberg, J.B., Scelonge, C.J., Burrus, M., and Bidney, L.L., Stable transformation of sunflower using Agrobacterium and split embryonic axis explants, Plant Sci., 1994, vol. 103, pp. 199–207.CrossRefGoogle Scholar
  23. 23.
    Muller, A., Iser, M., and Hess, D., Stable transformation of sunflower (Helianthus annuus L.), using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker, Transgenic Res., 2001, vol. 10, pp. 435–444.PubMedCrossRefGoogle Scholar
  24. 24.
    Ya, B., Neskorodov, A.L., Rakitin, A.M., et al., Development of phosphinothricin-resistant transgenic sunflower (Helianthus annuus L.) plants, Plant Cell Tissue Organ Cult., 2010, vol. 100, pp. 65–71.CrossRefGoogle Scholar
  25. 25.
    Sujatha, M., Vijay, S., Vasavi, S.P., et al., Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotype of sunflower (Helianthus annuus L.), Plant Cell Tissue Organ Cult., 2012, vol. 110, pp. 275–287.CrossRefGoogle Scholar
  26. 26.
    Bent, A.F., Arabidopsis in plant transformation. Uses, mechanisms, and prospects for transformation of other species, Plant Physiol., 2000, vol. 124, pp. 1540–1547.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Wang, W.C., Menon, G., and Hansen, G., Development of novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants, Plant Cell Rep., 2003, vol. 22, pp. 274–281.PubMedCrossRefGoogle Scholar
  28. 28.
    Chumakov, M.I., Rozhok, N.A., Velikov, V.A., et al., Agrobacterium-mediated in planta transformation of maize via pistil filaments, Russ. J. Genet., 2006, vol. 42, no. 8, pp. 893–897.CrossRefGoogle Scholar
  29. 29.
    Keshamma, E., Rohini, C., Rao, K.S., et al., Tissue culture-independent in plant transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.), J. Cotton Sci., 2008, vol. 12, pp. 264–272.Google Scholar
  30. 30.
    Komisarenko, A.G., Mikhal’skaya, S.I., Malina, A.E., et al., Optimization of the method of in vitro regeneration induction of sunflower inbred lines and hybrids, Fiziol. Biokhim. Kul’t.. Rast., 2009, vol. 41, no. 3, pp. 255–261.Google Scholar
  31. 31.
    Komisarenko, A.G., Mikhal’skaya, S.I., Kochetov, A.V., and Tishchenko, E.N., In vitro regeneration induction at Agrobacterium-mediated transformation of inbred sunflower lines, Biotekhnologiya, 2010, vol. 3, no. 4, pp. 67–74.Google Scholar
  32. 32.
    Grinsley, N., Hohn, B., Ramos, B., et al., DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions, Mol. Gen. Genet., 1989, vol. 217, nos. 2/3, pp. 309–316.CrossRefGoogle Scholar
  33. 33.
    Sawada, H., Ieki, H., and Matsuda, I., PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains, Appl. Envrion. Microbiol., 1995, vol. 61, no. 2, pp. 828–831.Google Scholar
  34. 34.
    Andryushchenko, V.K., Sayanova, V.V., Zhuchenko, A.A., et al., Modification of the proline determination method for revealing draught-resistant forms of Lycpersicon Tourn, Izv. Akad. Nauk Moldav. SSR, 1981, vol. 4, pp. 55–60.Google Scholar
  35. 35.
    Olhoft, P.M., Lin, K., Galbraith, J., et al., The role of thiol components in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells, Plant Cell Rep., 2001, vol. 20, pp. 731–737.CrossRefGoogle Scholar
  36. 36.
    Sergeeva, L.E., Komisarenko, A.G., Bronnikova, L.I., et al., Free proline content in sunflower tissues at realization of the morphogenetic potential in vitro, Biotech. Acta, 2013, vol. 6, no. 1, pp. 113–118.Google Scholar
  37. 37.
    Simoh, S., Quitana, N., Kim, H.K., et al., Metabolic changes in Agrobacterium tumefaciens-infected Brassica napa, J. Plant Physiol., 2009, vol. 166, no. 10, pp. 1005–1014.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller, G., Stein, H., Honig, A., et al., Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery, dictate proline accumulation, Planta, 2005, vol. 222, no. 1, pp. 70–79.PubMedCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • O. M. Tishchenko
    • 1
    Email author
  • A. G. Komisarenko
    • 1
  • S. I. Mykhalska
    • 1
  • L. E. Sergeeva
    • 1
  • N. I. Adamenko
    • 1
  • B. V. Morgun
    • 1
    • 2
  • A. V. Kochetov
    • 3
  1. 1.Institute of Plant Physiology and GeneticsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of Cell Biology and Genetic EngineeringNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations