Advertisement

Cytology and Genetics

, Volume 47, Issue 4, pp 202–209 | Cite as

Change in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro

  • K. V. Kotsarenko
  • V. V. Lylo
  • L. L. Macewicz
  • L. A. Babenko
  • A. I. Kornelyuk
  • T. A. Ruban
  • L. L. LukashEmail author
Article

Abstract

The influence of cytokines LIF, SCF, IL-3, and EMAP II and the Laferobion (IFN-a2b) drug on the MGMT gene expression in human cell cultures has been studied. It was shown that exogenous cytokines can modulate the MGMT gene expression at the protein level. EMAP II is able to increase or decrease the MGMT level, depending on the experimental conditions. Cytokines LIF, SCF, IL-3 and Laferobion decreased the MGMT expression level in human cells in vitro. Some conditions leading to the destruction of the MGMT protein complex were identified.

Keywords

human cell culture reparative enzyme MGMT expression regulation cytokines protein dimers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Margison, G., Povey, A., Kaina, B., and Santibáñez Koref, M., Variability and regulation of O6-alkylguanine-DNA alkyltransferase, Carcinogenesis, 2003, vol. 24, no. 4, pp. 625–635.PubMedCrossRefGoogle Scholar
  2. 2.
    Fang, Q., Noronha, A.M., Murphy, S.P., et al., Repair of O6-G-alkyl-O6-G interstrand cross-links by human O6-alkylguanhine-dna alkyltransferase, Biochemistry, 2008, vol. 47, no. 41, pp. 10892–10903.PubMedCrossRefGoogle Scholar
  3. 3.
    Kaina, B., Christmann, M., Naumann, S., and Roos, W., MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents, DNA Rep., 2007, vol. 6, pp. 1079–1099.CrossRefGoogle Scholar
  4. 4.
    Sabharwal, A. and Middleton, M.R., Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in cancer therapy, Curr. Opin. Pharm., 2006, vol. 6, pp. 355–363.CrossRefGoogle Scholar
  5. 5.
    Sharma, S., Salehi, F., Scheithauer, B.W., et al., Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis, Anticancer Res., 2009, vol. 29, no. 10, pp. 3759–3768.PubMedGoogle Scholar
  6. 6.
    Verbeek, B., Southgate, T.D., Gilham, D.E., and Margison, G.P., O6-methylguanine-DNA methyltransferase inactivation and chemotherapy, Brit. Med. Bull., 2008, vol. 85, pp. 17–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Niture, S.K., Doneanu, C.E., Velu, C.S., et al., Proteomic analysis of human O6-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry, Biochem. Biophys. Res. Commun., 2005, vol. 337, pp. 1176–1184.PubMedCrossRefGoogle Scholar
  8. 8.
    Natsume, A., Ishii, D., Wakabayashi, T., et al., IFN-β down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide, Cancer Res., 2005, vol. 65, no. 17, pp. 7573–7579.PubMedGoogle Scholar
  9. 9.
    Rosati, S.F., Williams, R.F., Nunnally, L.C., et al., IFN-beta sensitizes neuroblastoma to the antitumor activity of temozolomide by modulating O6-methylguanine DNA methyltransferase expression, Mol. Cancer Ther., 2008, vol. 7, no. 12, pp. 3852–3858.PubMedCrossRefGoogle Scholar
  10. 10.
    Zheng, M., Bocangel, D., Ramesh, R., et al., Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methylransferase in human melanoma cells, Mol. Cancer Ther., 2008, vol. 7, no. 12, pp. 3842–3851.PubMedCrossRefGoogle Scholar
  11. 11.
    Cardozo, A.K., Kruhoffer, M., Leeman, R., et al., Identification of novel cytokine-induced genes in pancreatic β-cells by high-density oligonucleotide arrays, Diabetes, 2001, vol. 50, pp. 909–920.PubMedCrossRefGoogle Scholar
  12. 12.
    Motomura, K., Natsume, A., Kishida, Y., et al., Benefits of interferon-β and temozolomide combination therapy for newly diagnosed primary glioblastoma with the unmethylated MGMT promoter, Cancer, 2011, vol. 117, no. 8, pp. 1721–1730.PubMedCrossRefGoogle Scholar
  13. 13.
    Briegert, M., Enk, A.H., and Kaina, B., Change in expression of MGMT during maturation of human monocytes into dendritic cells, DNA Rep., 2007, vol. 6, pp. 1255–1263.CrossRefGoogle Scholar
  14. 14.
    Ivakhno, S.S. and Kornelyuk, A.I., Cytokine-like activities of some aminoacyl-tRNA synthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis, Exp. Oncol., 2004, vol. 26, no. 4, pp. 250–255.PubMedGoogle Scholar
  15. 15.
    Schwarz, M.A., Kandel, J., Brett, J., et al., Endothelial-monocyte activating polypeptide II, a novel antitumour cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells, J. Exp. Mes., 1999, vol. 190, no. 3, pp. 341–354.CrossRefGoogle Scholar
  16. 16.
    Lylo, V.V., Matsevich, L.L., Kotsarenko, E.V., et al., Activation of gene expression of the O6-methylguanine-DNA transferase repair enzyme upon the influence of EMAP II cytokine in human cells in vitro, Cytol. Genet., 2011, vol. 45, no. 6, pp. 373–378.CrossRefGoogle Scholar
  17. 17.
    Dubrovsky, A.L., Brown, J.N., Kornelyuk, A.I., et al., Bacterial expression of full-length and truncated forms of cytokine EMAP-2 and cytokine-like domain of mammalian tyrosyl-tRNA synthetase, Biopolym. Cell, 2000, vol. 16, no. 3, pp. 229–235.CrossRefGoogle Scholar
  18. 18.
    Morton, E.N. and Margison, G.P., Increased O6-alkylguanine-DNA alkyltransferase activity in Chinese hamster V-79 cells following selection with chloroethylating agents, Carcinogenesis, 1988, vol. 9, no. 1, pp. 45–49.CrossRefGoogle Scholar
  19. 19.
    Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage t4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.PubMedCrossRefGoogle Scholar
  20. 20.
    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding, Anal. Biochem., 1976, vol. 72, no. 1/2, pp. 248–254.PubMedCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Aldridge, G.M., Podrebarac, D.M., Greenough, W.T., and Weiler, I.J., The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting, J. Neurosci. Meth., 2008, vol. 172, no. 2, pp. 250–254.CrossRefGoogle Scholar
  23. 23.
    Lylo, V.V., Identification of a modified form of the repair enzyme O6-alkylguanine-DNA alkyltransferase, Aktual. Probl. Akush. Ginekol. Klet. Biol. Med. Genet., 2010, vol. 19, pp. 299–305.Google Scholar
  24. 24.
    Kotsarenko, E.V., Lylo, V.V., Matseevich, L.L., et al., Cytokine LIF as a modulator MGMT gene expression in human cells in vitro, in Factors of Experimental Evolution of Organisms: Collected Scientific Papers, 2011, vol. 11, pp. 489–493.Google Scholar
  25. 25.
    Kotsarenko, E.V., Shaposhnik, L.A., Lylo, V.V., et al., Interferons as possible regulators of MGMT gene expression, Ukr. Biokhim. Zh., 2010, vol. 82, p. 35.Google Scholar
  26. 26.
    Pegg, A.E., Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools, Chem. Res. Toxicol., 2011, vol. 24, no. 5, pp. 618–639.PubMedCrossRefGoogle Scholar
  27. 27.
    Blough, M.D., Zlatescu, M.C., and Cairncross, J.G., O6-methylguanine-DNA methyltransferase regulation by p53 in astrocytic cells, Cancer Res., 2007, vol. 67, no. 2, pp. 580–584.PubMedCrossRefGoogle Scholar
  28. 28.
    Roos, W.P., Jost, E., Belohlavek, C., et al., Intrinsic anticancer drug resistance of malignant melanoma cells is abrogated by IFN-β and valproic acid, Cancer Res., 2011, vol. 71, no. 12, pp. 4150–4160.PubMedCrossRefGoogle Scholar
  29. 29.
    De Veer, M.J., Holko, M., Frevel, M., et al., Functional classification of interferon-stimulated genes identified using microarrays, J. Leuk. Biol., 2001, vol. 69, no. 6, pp. 912–920.Google Scholar
  30. 30.
    Takaoka, A., Hayakawa, S., Yanai, H., et al., Integration of interferon-α/β signaling to p53 responses in tumour suppression and antiviral defense, Nature, 2003, vol. 424, pp. 516–523.PubMedCrossRefGoogle Scholar
  31. 31.
    Traut, T.W., Dissociation of enzyme oligomers: a mechanism for allosteric regulation, Crit. Rev. Biochem. Mol. Biol., 1994, vol. 29, no. 2, pp. 135–163.CrossRefGoogle Scholar
  32. 32.
    Marianayagam, N.J., Sunde, M., and Matthews, J.M., The power of two: protein dimerization in biology, Trends Biochem. Sci., 2004, vol. 29, no. 11, pp. 618–625.PubMedCrossRefGoogle Scholar
  33. 33.
    Henriksen, U., Fog, J.U., Litman, T., and Gether, U., Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2, J. Biol. Chem., 2005, vol. 280, no. 44, pp. 36926–36934.PubMedCrossRefGoogle Scholar
  34. 34.
    Kolodziejski, P.J., Rashid, M.B., and Eissa, N.T., Intracellular formation of “undisruptable” dimmers of inducible nitric oxide synthase, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 24, pp. 14263–14268.PubMedCrossRefGoogle Scholar
  35. 35.
    Adams, C.A., Melikishvili, M., Rodgers, D.W., et al., Topologies of complexes containing O6-alkylguanine-DNA alkyltransferase and DNA, J. Mol. Biol., 2009, vol. 389, pp. 248–263.PubMedCrossRefGoogle Scholar
  36. 36.
    Duguid, E.M., Rice, P.A., and He, C., The structure of the human AGT protein bound to DNA and its implications for damage detection, J. Mol. Biol., 2005, vol. 350, pp. 657–666.PubMedCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • K. V. Kotsarenko
    • 1
  • V. V. Lylo
    • 1
  • L. L. Macewicz
    • 1
  • L. A. Babenko
    • 1
  • A. I. Kornelyuk
    • 1
  • T. A. Ruban
    • 1
  • L. L. Lukash
    • 1
    Email author
  1. 1.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations