Cytology and Genetics

, Volume 45, Issue 6, pp 352–361 | Cite as

Main trends in the genetic transformation of Populus species

  • N. K. KutsokonEmail author


The main advantages that could be obtained by poplar plantation production were described in this review. We also described the significance of poplars for industry and for solutions to ecological problems. Taking into consideration the results obtained by genetic engineering methods, we analyzed the trends in the improvement of the Populus phenotypes related to the resistance to biotic and abiotic stresses and herbicides, as well as to the modification of the wood quality (decreasing or modifing the lignin content), phytoremediation, plant growth acceleration, and changes in the plant morphology.


Transgenic Plant Lignin Content Glycine Betaine Hybrid Poplar Cinnamyl Alcohol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Confalonieri, M., Balestrazzi, A., Bisoffi, S., and Carbonera, D., In Vitro Culture and Genetic Engineering of Populus spp.: Forest Tree Improvement, Plant Cell. Tissue and Organ Culture, 2003, vol. 72, pp. 109–138.CrossRefGoogle Scholar
  2. 2.
    Vietto, L., Chiarabaglio, P.M., Rossino, R., and Cristalli, L., Meeting River Restoration and Conservation of Native Poplars on the Po River: the “Isola Colonia” Case Study, in Fifth Intern. Poplar Symposium: Poplars and Willows: from Research Models to Multipurpose Trees for a Biobased Society (Orvieto, Italy, September 20–25, 2010), p. 23.Google Scholar
  3. 3.
    Doty, S.L., James, C.A., Moore, A.L., Vajzovic, A., Singleton, G.L., Ma, C., Khan, Z., Xin, G., Kang, J.W., Park, J.Y., Meilan, R., Strauss, S.H., Wilkerson, J., Farin, F., and Strand, S.E., Enhanced Phytoremediation of Volatile Environmental Pollutants with Transgenic Trees, Proc. Nat. Acad. Sci. U.S.A., 2007, vol. 104, no. 43, pp. 16816–16821.CrossRefGoogle Scholar
  4. 4.
    Massacci, A., Paris, P., Aromolo, R., Ecosse, A., Bianconi, D., and Scarascia-Mugnozza, G., Linking Wood Bioenergy Production in Poplar and Willow Plantations with Soil and Wastewater Phytoremediation in Italy, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a bio-based society (Orvieto, Italy, September 20–25, 2010), p. 143.Google Scholar
  5. 5.
    Weih, M., Baum, S., and Bolte, A., Flora-Diversity in Swedish Willow and Poplar Stands: Woody Energy Crops Can Improve Biodiversity in Agricultural Landscape, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society (Orvieto, Italy, September 20–25, 2010), p. 148.Google Scholar
  6. 6.
    DeWoody, J., Trewin, H., Viger, M., and Taylor, G., Growing Large Leaves from a Small-Leaf Gene Pool: Evolutionary Trajectories in Populus nigra L. (Black Poplar) in Context of a Changing Climate, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society (Orvieto, Italy, September 20–25, 2010), p. 19.Google Scholar
  7. 7.
    Villar, M., Chamaillard, S., Barbaroux, C., Bastien, C., Brignolas, F., Faivre Rampant P., Fichot, R., Forestier, O., Jorge, V., and Rodrigues, S., Populus nigra as Keystone Species Able to Cope with the Ongoing Climate Change, in Fifth Intern. Poplar Symposium: Poplars and willows: from research models to multipurpose trees for a biobased society (Orvieto, Italy, September 20–25, 2010), p. 17.Google Scholar
  8. 8.
    Fillatti, J.J., Sellmer, J., McCown, B.H., Haissig, B.E., and Comai, L., Agrobacterium Mediated Transformation and Regeneration of Populus, Mol. Gen. Genet., 1987, vol. 206, no. 2, pp. 192–199.CrossRefGoogle Scholar
  9. 9.
    Tzfira T., Jensen, C.S., Wang, W., Zuker, A., Vinocur, B., Altman, A., and Vainstein, A., Transgenic Populus tremula: A Step-by-Step Protocol for Its Agrobacterium-Mediated Transformation, Plant Mol. Biol. Rep., 1997, vol. 15, pp. 219–235.CrossRefGoogle Scholar
  10. 10.
    Han, K.H.., Meilan, R., Ma, C., and Strauss, S.H, An Agrobacterium tumefaciens Transformation Protocol Effective on a Variety of Cottonwood Hybrids (Genus Populus), J. Plant Cell Rep., 2000, vol. 19, pp. 315–320.CrossRefGoogle Scholar
  11. 11.
    Meilan, R. and Ma, C., Poplar (Populus spp.), Meth. Mol. Biol., 2006, vol. 344, pp. 143–151.Google Scholar
  12. 12.
    Kutsokon, N.K., Levenko, B.A., Levchik, N.Ya., Lyubinskaya, A.V., Rakhmetov, D.B., Rudas, V.A., Gnatyuk, I.V., Rashidov, N.M., and Grodsinsky, D.M., Methods of Direct Regeneration and Microclonal Propagation of Populus species, in Conservarea Diversitatii Plantelor: Simp. Stiitfic International, Chisinau, Moldova, October 7–9, 2010), pp. 124–127.Google Scholar
  13. 13.
    Taylor, G., Populus: Arabidopsis for Forestry. Do We Need a Model Tree? Arm. Bot., 2002, vol. 90, pp. 681–689.CrossRefGoogle Scholar
  14. 14.
    Tuskan, G.A. DiFazio, S., et al., The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray), Science, 2006, vol. 313, pp. 1596–1604.PubMedCrossRefGoogle Scholar
  15. 15.
    Giri, C.C., Shyamkumar, B., and Anjaneyulu, C., Progress in Tissue Culture, Genetic Transformation and Applications of Biotechnology to Trees: An Overview, Trees, 2004, vol. 16, pp. 115–135.Google Scholar
  16. 16.
    Herschbach, C. and Kopriva, S., Transgenic Trees as Tools in Tree and Plant Physiology, Trees, 2002, vol. 16, pp. 250–261.CrossRefGoogle Scholar
  17. 17.
    Rishi, A.S., Nelson, N.D., and Goyal, A., Genetic Modification for Improvement of Populus, Physiol. Mol. Biol. Plants, 2001, vol. 7, pp. 7–21.Google Scholar
  18. 18.
    Lin, S.Z., Zhang, Z.Y., Zhang, Q., and Lin, Y.Z., Progress in the Study of Molecular Genetic Improvements of Poplar in China, J. Integr. Plant Biol., 2006, vol. 48, no. 9, pp. 1001–1007.CrossRefGoogle Scholar
  19. 19.
    Fladung, M., Gene Stability in Transgenic Aspen (Populus). 1. Flanking DNA Sequences and T-DNA Structure, Mol. Gen. Genet., 1999, vol. 260, no. 6, pp. 574–781.PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar, S. and Fladung, M., Gene Stability in Transgenic Aspen (Populus). 2. Molecular Characterization of Variable Expression of Transgene in Wild and Hybrid Aspen, Planta, 2001, vol. 213, no. 5, pp. 731–740.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, J., Brunner, A.M., Meilan, R., and Strauss, S.H., Stability of Transgenes in Trees: Expression of Two Reporter Genes in Poplar over Three Field Seasons, Tree Physiol., 2009, vol. 29, pp. 299–312.PubMedCrossRefGoogle Scholar
  22. 22.
    Hawkins, S., Leple, J., Cornu, D., Jouanin, L., and Pilate, G., Stability of Transgene Expression in Poplar: A Model Forest Tree Species, Ann. Forest Sci., 2003, vol. 5, pp. 427–438.CrossRefGoogle Scholar
  23. 23.
    Morohoshi, N. and Kajita, S., Formation of a Tree Having a Low Lignin Content, J. Plant Res., 2001, vol. 114, pp. 517–523.CrossRefGoogle Scholar
  24. 24.
    Spokevicius, A.V., Van Beveren, K.S., and Bossinger, G., Agrobacterium-Mediated Transformation of Dormant Lateral Buds in Poplar Trees Reveals Developmental Patterns in Secondary Stem Tissues, Funct. Plant Biol., 2006, vol. 33, pp. 133–139.CrossRefGoogle Scholar
  25. 25.
    Kutsokon, N.K., The Main Pathways for Obtaining Abiotic Stress-Tolerant Transgenic Poplars, in FEBS J., Abstracts of 35 FEBS Congress (Gothenburg, Sweden, June 26–July 1, 2010), p. 195.Google Scholar
  26. 26.
    Speranskaya, A.S., Kunitz Proteinase Inhibitors from Potato: Molecular Cloning and Gene Expression, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2008.Google Scholar
  27. 27.
    Delledonne, M., Allegro, G., Belenghi, B., Balestrazzi, A., Picco, F., Levine, A., Zelasco, S., Calligari, P., and Confalonieri, M., Transformation of White Poplar (Populus alba L.) with a Novel Arabidopsis thaliana Cysteine Proteinase Inhibitor and Analysis of Insect Pest Resistance, Mol. Breed., 2001, vol. 7, pp. 35–42.CrossRefGoogle Scholar
  28. 28.
    Leple, J.C., Bonade Bottino, M., Augustin, S., Pilate, G., Dumanois, L.T.V., Delplanque, A., Cornu, D., and Jouanin, L., Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of Transgenic Poplars Expressing a Cysteine Proteinase Inhibitor, Mol. Breed., 1995, vol. 1, no. 4, pp. 319–328.CrossRefGoogle Scholar
  29. 29.
    Genissel, A., Leple, J.C., Millet, N., Augustin, S., and Gilles Pilate, L.J., High Tolerance against Chrysomela tremulae of Transgenic Poplar Plants Expressing a Synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis, Mol. Breed., 2003, vol. 11, pp. 103–110.CrossRefGoogle Scholar
  30. 30.
    Confalonieri, M., Allegro, G., Balestrazzi, A., Fogher, C., and Delledonne, M., Regeneration of Populus nigra Transgenic Plants Expressing a Kunitz Proteinase Inhibitor (KTi3) Gene, Mol. Breed., 1998, vol. 4, pp. 137–145.CrossRefGoogle Scholar
  31. 31.
    Sairam, R.K. and Tyagi, A., Physiology and Molecular Biology of Salinity Stress Tolerance in Plants, Curr. Sci., 2004, vol. 86, no. 3, pp. 407–421.Google Scholar
  32. 32.
    Jouve, L., Hoffmann, L., and Hausman, J.F., Polyamine, Carbohydrate and Proline Content Changes During Salt Stress Exposure of Aspen (Populus tremula L.) Involvement of Oxidation and Osmoregulation Metabolism, Plant Biol., 2004, vol 6, pp. 74–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Kolodyazhnaya, Ya.S., Kutsokon, N.K., Levenko, B.A., Syutikova, O.S., Rakhmetov, D.B., and Kochetov, A.V., Transgenic Plants Tolerant to Abiotic Stresses, Cytol. Genet., 2009, vol. 43, no. 2, pp. 132–150.CrossRefGoogle Scholar
  34. 34.
    Nuccio, M.L., Rhodes, D., McNeil, S.D., and Hanson, A.D., Metabolic Engineering of Plants for Osmotic Stress Resistance, Curr. Opin. Plant Biol., 1999, vol. 2, pp. 128–134.PubMedCrossRefGoogle Scholar
  35. 35.
    Parvanova, D., Popova, A., Zaharieva, I., Lambrev, P., Konstantinova, T., Taneva, S., Atanassov, A., Goltsev, V., and Djilianov, D., Low Temperature Tolerance of Tobacco Plants Transformed to Accumulate Proline, Fructans, or Glycine Betaine. Variable Chlorophyll Fluorescence Evidence, Photosynthetica, 2004, vol. 42, no. 2, pp. 179–185.CrossRefGoogle Scholar
  36. 36.
    Hu, L., Lu, H., Liu, Q., Chen, X., and Jiang, X., Overexpression of MtlD Gene in Transgenic Populus tomentosa Improves Salt Tolerance through Accumulation of Mannitol, Tree Physiol., 2005, vol. 25, pp. 1273–1281.PubMedGoogle Scholar
  37. 37.
    Wang, W., Vinocur, B., and Altman, A., Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance, Planta, 2003, vol. 218, pp. 1–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Kavi Kishor, P.B., Hong, Z., Miao, C.-H., Hu, C.A., and Verma, D.P., Overexpression of A-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants, Plant Physiol., 1995, vol. 108, pp. 1387–1394.Google Scholar
  39. 39.
    Kavi Kishor, P.B., Sangam, S., Amrutha, N.R., Sri Laxmi P., Naidu, K.R., Rao, K.R.S.S., Sreenath Rao., Reddy, K.J., Theriappan, P., and Sreenivasulu, N., Regulation of Proline Biosynthesis, Degradation, Uptake and Transport in Higher Plants: Its Implications in Plant Growth and Abiotic Stress Tolerance, Curr. Sci., 2005, no. 3, pp. 424–438.Google Scholar
  40. 40.
    Kolodyazhnaya, Ya.S., Titov, S.E., Kochetov, A.V., Komarova, M.L., Romanova, A.V., Koval’, V.S., and Shumny, V.K., Evaluation of Salt Tolerance in Nicotiana tabacum Plants Bearing an Antisense Suppressor of the Proline Dehydrogenase Gene, Russ. J. Genet., 2006, vol. 42, no. 2, pp. 212–214.CrossRefGoogle Scholar
  41. 41.
    Hur, J., Jung, K., Lee, C.-H., and Ana, G., Stress-Inducible OsP5CS2 Gene Is Essential for Salt and Cold Tolerance in Rice, Plant Sci., 2004, vol. 167, pp. 417–426.CrossRefGoogle Scholar
  42. 42.
    Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N., Shimoishi, Y., Nakamura, Y., and Murata, Y., Exogenous Proline and Glycinebetaine Increase Antioxidant Enzyme Activities and Confer Tolerance to Cadmium Stress in Cultured Tobacco Cells, J. Plant Physiol., 2009, vol. 166, pp. 1587–1597.PubMedCrossRefGoogle Scholar
  43. 43.
    Levenko, B.A., Transgennye rasteniya (Transgenic Plants), Kiev, 2000.Google Scholar
  44. 44.
    Kawaoka, A., Matsunaga, E., Endo, S., Kondo, S., Yoshida, K., Shinmyo, A., and Ebinuma, H., Ectopic Expression of a Horseradish Peroxidase Enhances Growth Rate and Increases Oxidative Stress Resistance in Hybrid Aspen, Plant Physiol., 2003, vol. 132, pp. 1177–1185.PubMedCrossRefGoogle Scholar
  45. 45.
    Sharkey, T.D. and Singsaas, E.L., Why Plants Emit Isoprene, Nature, 1995, vol. 374, p. 769.CrossRefGoogle Scholar
  46. 46.
    Behnke, K., Ehlting, B., Teuber, M., Bauerfeind, M., Louis, S., Hansch, R., Polle, A., Bohlmann, J., and Schnitzler, J., Transgenic, Non-Isoprene Emitting Poplars Don’t Like It Hot, Plant J., 2007, vol. 51, pp. 485–499.PubMedCrossRefGoogle Scholar
  47. 47.
    Mohapatra, S., Minocha, R., and Minocha, S.C., Putrescine Overproduction Changes the Oxidative State of Poplar Cells in Culture and Aids in Aluminum Tolerance, in 71 Annual Meeting of the Northeast Section of the American Society of Plant Biologists “Fueling the Future through Plant Biology,” SUNY College of Environmental Science and Forestry Syracuse, New York, June 1–2, 2007.Google Scholar
  48. 48.
    Balestrazzi, A., Botti, S., Zelasco, S., Biondi, S., Franchin, C., Calligari, P., Racchi, M., Turchi, A., Lingua, G., Berta, G., and Carbonera, D., Expression of the PsMTA1 Gene in White Poplar Engineered with the MAT System Is Associated with Heavy Metal Tolerance and Protection against 8-Hydroxy-20-Deoxyguanosine Mediated-DNA Damage, Plant. Cell Rep., 2009, vol. 28, pp. 1179–1192.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, Y.C., Qu, G.Z., Li, H.Y., Wu, Y.J., Wang, C., Liu, G.F., and Yang, C.P., Enhanced Salt Tolerance of Transgenic Poplar Plants Expressing a Manganese Superoxide Dismutase from Tamarix androssowii, Mol. Biol. Rep., 2010, vol. 37, no. 2, pp. 1119–1124.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang, T.T., Song, Y.Z., Liu, Y.D., Guo, X.Q., Zhu, C.X., and Wen, F.J., Overexpression of Phospholipase Da Gene Enhances Drought and Salt Tolerance of Populus tomentosa, J. Chinese Sci. Bull., 2008, vol. 53, no. 23, pp. 3656–3665.CrossRefGoogle Scholar
  51. 51.
    Zhou, Z, Wang, M.-J., Hu, J.-J., Lu, M.-Z., and Wang, J.H., Improve Freezing Tolerance in Transgenic Poplar by Overexpressing a ω-3 Fatty Acid Desaturase Gene, Mol. Breed., 2010, vol. 25, no. 4, pp. 571–579.CrossRefGoogle Scholar
  52. 52.
    Welling, A., Moritz, T., Patva, E.T., and Junttila, O., Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen, Plant Physiol., 2002, vol. 129, pp. 1633–1641.PubMedCrossRefGoogle Scholar
  53. 53.
    Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M.E., Martinussen, I., Olsson, O., Sandberg, G., and Moritz, T., Ectopic Expression of Oat Phytochrome A in Hybrid Aspen Changes Critical Day Length for Growth and Prevents Cold Acclimatization, Plant J., 1997, vol. 12, pp. 1339–1350.CrossRefGoogle Scholar
  54. 54.
    Li, Y., Su, X., Zhang, B., Huang, Q., Zhang, X., and Huang, R., Expression of Jasmonic Ethylene Responsive Factor Gene in Transgenic Poplar Tree Leads to Increased Salt Tolerance, Tree Physiol., 2009, vol. 29, no. 2, pp. 273–279.PubMedCrossRefGoogle Scholar
  55. 55.
  56. 56.
    Barakat, A., Bagniewska-Zadwoma, A., Choi, A., Plakkat, U., Diloreto, D.S., Yellanki, P., and Carlson, J.E., The Cinnamyl Alcohol Dehydrogenase Gene Family in Populus: Phytogeny, Organization, and Expression, BMC Plant Biol, 2009, vol. 9, no. 26, pp. 1–15.Google Scholar
  57. 57.
    Ovruts’ka, I.I., Notion about Cell Wall Lignification, Ukr. Bot. Zh., 2007, vol. 64, no. 5, pp. 720–729.Google Scholar
  58. 58.
    Rukavtsova, E.B., Alekseeva, V.V., and Bur’yanov, Ya.I., The Use of RNA Interference for the Metabolic Engineering of Plants (Review), Russ. J. Bioorg. Chem., 2010, vol. 36, no. 2, pp. 146–156.CrossRefGoogle Scholar
  59. 59.
    Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J., and Chiang, V.L., Repression of Lignin Biosynthesis Promotes Cellulose Accumulation and Growth in Transgenic Trees, Nat. Biotechnol., 1999, vol. 17, no. 8, pp. 808–812.PubMedCrossRefGoogle Scholar
  60. 60.
    Stewart, J.J., Akiyama, T., Chapple, C., Ralph, J., and Mansfield, S.D., The Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar, Plant. Physiol., 2009, vol. 150, no. 2, pp. 621–635.PubMedCrossRefGoogle Scholar
  61. 61.
    Coleman, H.D., Park, J.-Y., Nair, R., Chappie, C., and Mansfield, S.D., RNAi-Mediated Suppression of P-Coumaroyl-CoA 3’-Hydroxylase in Hybrid Poplar Impacts Lignin Deposition and Soluble Secondary Metabolism, Proc. Nat. Acad. Sci. U.S.A., 2008, vol. 105, no. 11, pp. 4501–4506.CrossRefGoogle Scholar
  62. 62.
    Lapieirre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Leple, J.-C., Boerjan, W., Ferret, V., De Nadai, V., and Jouanin, L., Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping, Plant Physiol., 1999, vol. 119, pp. 153–163.CrossRefGoogle Scholar
  63. 63.
    Lapieirre, C., Pilate, G., Pollet, B., Mila, L., Jouanin, J.-L., Kimd, H., and Ralph, J., Signatures of Cinnamyl Alcohol Dehydrogenase Deficiency in Poplar Lignins, Phytochemistry, 2004, vol. 65, pp. 313–321.CrossRefGoogle Scholar
  64. 64.
    Gordon, M.P., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, L., Ruszaj, M., Shurtleff, B.B., Strand, S., Wilmoth, J., and Newman, L.A., Phytoremediation of Trichloroethylene with Hybrid Poplars, Environ. Health Perspect., 1998, vol. 106, pp. 1001–1012.PubMedGoogle Scholar
  65. 65.
    Abhilash, P.C., Jamil, S., and Singh, N., Transgenic Plants for Enhanced Biodegradation and Phytoremediation of Organic Xenobiotics, Biotechnol. Adv., 2009, vol. 27, pp. 474–488.PubMedCrossRefGoogle Scholar
  66. 66.
    Ohmiya, Y., Ono, T., Taniguchi, T., Itahana, N., Ogawa, N., Miyashita, K., Ohmiya, K., Sakka, K., and Kimura, T., Stable Expression of the Chlorocatechol Dioxygenase Gene from Ralstonia eutropha NH9 in Hybrid Poplar Cells, Boisci. Biotechnol. Biochem., 2009, vol. 73, no. 6, pp. 1425–1428.CrossRefGoogle Scholar
  67. 67.
    Zscheck, K.K. and Murray, B.E., Evidence for a Staphylococcal-Like Mercury Resistance Gene in Enterococcus Faecalis, Antimicrob. Agents Chemother., 1990, vol. 34, no. 6, pp. 1287–1289.PubMedGoogle Scholar
  68. 68.
    Choi, Y.I., Noh, E.W., Lee, H.S., Han, M.S., Lee, J.S., and Choi, K.S., Mercury-Tolerant Transgenic Poplars Expressing Two Bacterial Mercury-Metabolizing Genes, J. Plant Biol., 2007, no. 6, pp. 658–662.Google Scholar
  69. 69.
    Peuke, A.D. and Rennenberg, H., Phytoremediation with Transgenic Trees, Z. Naturforsch., A: Phys. Sci., 2005, no. 199, p. 207.Google Scholar
  70. 70.
    De Block, M., Factors Influencing the Tissue Culture and the Agrobacterium Tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones, Plant Physiol., 1990, pp. 1110–1116.Google Scholar
  71. 71.
    Confalonieri, M., Belenghi, B., Balestrazzi, A., Negri, S., Facciotto, G., Schenone, G., and Delledonne, M., Transformation of Elite White Poplar (Populus alba L.) cv’ Villafranca’ and Evaluation of Herbicide Resistance, Plant Cell Rep., 2000, vol. 19, pp. 978–982.CrossRefGoogle Scholar
  72. 72.
    Busov, V.B., Brunner, A.M., and Strauss, S.H., Genes for Control of Plant Stature and Form, New Phytol., 2008, vol. 177, pp. 589–607.PubMedCrossRefGoogle Scholar
  73. 73.
    Busov, V.B., Meilan, R., Pearce, D.W., Ma, C., Rood, S.B., and Strauss, S.H., Activation Tagging of a Dominant Gibberellin Catabolism Gene (GA 2-Oxidase) from Poplar Mat Regulates Tree Stature, Plant Physiol., 2003, vol. 132, pp. 1283–1291.PubMedCrossRefGoogle Scholar
  74. 74.
    Etherington, E., Gandhi, H., Busov, V., Meilan, R., Ma, C., Kosola, K., and Strauss, S.H., Dwarfism Genes for Modifying the Stature of Woody Plants: a Case Study in Poplar, Landscape Plant News, 2007, vol. 18, pp. 3–6.Google Scholar
  75. 75.
    Eriksson, M.E., Israelsson, M., Olsson, O., and Moritz, T., Increased Gibberellin Biosynthesis in Transgenic Trees Promotes Growth, Biomass Production and Xylem Fiber Length, Nat. Biotechnol., 2000, vol. 18, no. 7, pp. 784–788.PubMedCrossRefGoogle Scholar
  76. 76.
    Choi, Y.I., Noh, E.W., and Choi, K.S., Low Level Expression of Prokaryotic Tzs Gene Enhances Growth Performance of Transgenic Poplars, Trees, 2009, no. 23, pp. 741–750.Google Scholar
  77. 77.
    Tzfira, T., Vainstein, A., and Altman, A., rol-Gene Expression in Transgenic Aspen (Populus tremula) Plants Results in Accelerated Growth and Improved Stem Production Index, Trees, 1999, vol. 14, pp. 49–54.Google Scholar
  78. 78.
    Fuchilo, Ya.D., Plantation Forestry in Ukraine: Prospects of Development, in Nauk. Visn. Nats. Lisotekhn. Univ. Ukr.: Collected Papers, 2008, vol. 6, pp. 97–99.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  1. 1.Institute of Cell Biology and Genetic EngineeringNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations