Cytology and Genetics

, Volume 43, Issue 2, pp 132–149 | Cite as

Transgenic plants tolerant to abiotic stresses

  • Ya. S. KolodyazhnayaEmail author
  • N. K. Kutsokon
  • B. A. Levenko
  • O. S. Syutikova
  • D. B. Rakhmetov
  • A. V. Kochetov
Review Articles


The publications containing data on the generation and study of transgenic plants tolerant to various types of abiotic stresses were analyzed. Mechanisms of plant protection against stresses and genes encoding a wide spectrum of compounds that confer the ability to survive under stress conditions, which cause inhibition of development and are even lethal to control plants are also discussed.


Proline Transgenic Plant Abiotic Stress Salt Stress Salt Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyer, J.S., Plant Productivity and Environment, Science, 1982, vol. 218, pp. 443–448.PubMedCrossRefGoogle Scholar
  2. 2.
    Bray, E.A., Bailey-Serres, J., and Weretilnyk, E., in Biochemistry and Molecular Biology of Plans, Gruissem, W., Buchannan, B., and Jones, R., Eds., Amer. Soc. Rockville, 2000, pp. 1158–1249.Google Scholar
  3. 3.
    FAO (Food, Agriculture Organization of the United Nations) FAO Production Yearbook, Rome: FAO, 2004.Google Scholar
  4. 4.
    Al-Khatib, K. and Paulsen, G.M., High-Temperature Effects on Photosynthetic Processes in Temperate and Tropical Cereals, Crop Sci. Soc. Amer., 1999, vol. 39, pp. 119–125.Google Scholar
  5. 5.
    Kratsch, H.A. and Wise, R.R., The Ultrastructure of Chilling Stress, Plant Cell Environ., 2000, vol. 23, pp. 337–350.CrossRefGoogle Scholar
  6. 6.
    Hasegawa, P.M., Bresan, R.A., Zhu, J.-K., and Bohnert, H.J., Plant Cellular and Molecular Responses to High Salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 463–499.PubMedCrossRefGoogle Scholar
  7. 7.
    Strizhov, N., Abraham, E., Okresz, L., et al., Differential Expression of Two Δ1-Pyrroline-5-Carboxylate Synthetase Genes Controlling Proline Accumulation during Salt Stress Requires ABA and Is Regulated by ABA1, ABII and AXR2 in Arabidopsis, Plant J., 1997, vol. 12, pp. 557–569.PubMedCrossRefGoogle Scholar
  8. 8.
    Ma, S., Gong, Q., and Bohnert, H.J., Dissecting Salt Stress Pathways, J. Exp. Bot., 2006, vol. 57, no. 5, pp. 1097–1107.PubMedCrossRefGoogle Scholar
  9. 9.
    Delauney, A.J. and Verma, D.P.S., Proline Biosynthesis and Osmoregulation in Plants, Plant J., 1993, vol. 4, pp. 215–223.CrossRefGoogle Scholar
  10. 10.
    Kuznetsov, V.V. and Starostenko, N.V., Synthesis of Heat Shock Proteins and Their Contribution to the Survival of Intact Cucumber Plants Exposed to Hyperthermia, Fiziol. Rast., 1994, vol. 41, no. 3, pp. 374–380.Google Scholar
  11. 11.
    Kuznetsov, V.V. and Shevyakova, N.I., Proline under Stress: Biological Role, Metabolism, and Regulation, Fiziol. Rast., 1999, vol. 46, no. 2, pp. 321–336.Google Scholar
  12. 12.
    Willenbrink, M.E. and Husemann, W., Photoautotrophic Cell Suspension Cultures from Mesembryanthemum crystallinum and Their Response to Salt Stress, Bot. Acta, 1995, vol. 108, pp. 497–504.Google Scholar
  13. 13.
    Eimer, M., Transgenic Drought- and Salt-Tolerant Plant, Genet. Engineer. Newslett., 2004, Spec. issue no 15, pp. 1–14.Google Scholar
  14. 14.
    Kuznetsov, V.V. and Dmitrieva, G.A., Fiziologiya rastenii (Plant Physiology), Moscow: Vysshaya Shkola, 2005.Google Scholar
  15. 15.
    Groppa, M.D. and Benavides, M.P., Polyamines and Abiotic Stress: Recent Advances, Amino Acids, 2008, vol. 34, pp. 35–45.PubMedCrossRefGoogle Scholar
  16. 16.
    Turner, N.C., Shahal, A., Berger, J.D., et al., Osmotic Adjustment in Chickpea (Cicer arietinum L.) Results in No Yield Benefit under Terminal Drough, J. Exp. Bot., 2007, vol. 58, pp. 187–194.PubMedCrossRefGoogle Scholar
  17. 17.
    Garg, A.K., Kim, J.K., Owens, T.G., et al., Trehalose Accumulation in Rice Plants Confers High Tolerance Levels to Different Abiotic Stresses, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, pp. 15898–15903.PubMedCrossRefGoogle Scholar
  18. 18.
    Shevyakova, N.I., Metabolism and Physiological Role of Proline in Plants in Water and Salt Stress, Fiziol. Rast., 1983, vol. 30, no. 4, pp. 768–781.Google Scholar
  19. 19.
    Kishor, P.B.K., Hong, Z., Miao, G.H., et al., Overexpression of Δ-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants, Plant Physiol., 1995, vol. 108, pp. 1387–1394.PubMedGoogle Scholar
  20. 20.
    Hare, P.D., Cress, W.A., and Van Staden, J., Dissecting the Roles of Osmolyte Accumulation During Stress, Plant Cell and Environ., 1998, vol. 21, pp. 535–553.CrossRefGoogle Scholar
  21. 21.
    Hong, Z., Lakkineni, K., Zhang, Z., and Verma, D.P., Removal of Feedback Inhibition of Δ1-Pyrroline-5-Carboxylase Synthetase Results in Increased Proline Accumulation and Protection of Plants from Osmotic Stress, Plant Physiol., 2000, vol. 122, pp. 1129–1136.PubMedCrossRefGoogle Scholar
  22. 22.
    Sawahel, W.A. and Hassan, A.H., Generation of Transgenic Wheat Plants Producing High Levels of the Osmoprotectant Proline, Biotechnol. Lett., 2002, pp. 721–725.Google Scholar
  23. 23.
    Gleeson, D., Lelu-Water, M.-A., and Parkinson, M., Overproduction of Proline in Transgenic Hybrid Larch (Larix × leptoeuropaea (Dengler) Cultures Renders Them Tolerant to Cold, Salt and Frost, Mol. Breed., 2005, vol. 15, pp. 21–29.CrossRefGoogle Scholar
  24. 24.
    Sergeeva, L.E. and Levenko, B.A., The Content of Free Proline in Salt-Resistant Tobacco Cell Lines and Their Regeneratns, in Genetika somaticheskikh kletok v kul’ture: Tez. Dokl. Vsesoyuz. Konf., Zvenigorod (Genetics of Somatic Cells in Culture, Abstracts of Papers, All-Union Conf., Zvenigorod), 1986, pp. 43–44.Google Scholar
  25. 25.
    Yurkevich, L.N. and Potopal’skii, A.I., Proline as a Factor of Rye Resistance to Substrate Salinization, Fiziol. Biokhim. Kul’t. Rast., 1994, vol. 26, no. 6, pp. 600–605.Google Scholar
  26. 26.
    Igarashi, Y., Yoshiba, Y., Sanada, Y., et al., Characterization of the Gene for Delta1-Pyrroline-5-Carboxylate Synthetase and Correlation between the Expression of the Gene and Salt Tolerance in Oryza sativa L., Plant Mol. Biol., 1997, vol. 33, pp. 857–865.PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada, M., Morishita, H., Urano, K., et al., Effects of Free Proline Accumulation in Petunias under Drought Stress, J. Exp. Bot., 2005, vol. 56, pp. 1975–1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K., A Nuclear Gene Encoding Mitochondrial Proline Dehydrogenase, and Enzyme Involved in Proline Metabolism, Is Upregulated by Proline But Downregulated by Dehydration in Arabidopsis, Plant Cell, 1996, vol. 8, pp. 1323–1335.PubMedCrossRefGoogle Scholar
  29. 29.
    Szekely, G., Abraham, E., Cseplo, A., et al., Duplicated P5CS Genes of Arabidopsis Play Distinct Roles in Stress Regulation and Develompental Control of Proline Biosynthesis, Plant J., 2008, vol. 53, no. 1, pp. 11–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Aida, H.-S., Overexpression of 1-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Salt Tolerance in Transgenic Potato Plants, J. Plant Sci., 2005, vol. 169, no. 4, pp. 746–752.CrossRefGoogle Scholar
  31. 31.
    Zhu, B., Su, J., Chang, M., Verma, D.P.S., et al., Over-Expression of a Δ1-P5CS Gene and Analysis of Tolerance to Water and Salt-Stress in Transgenic Rice, Plant Sci., 1998, vol. 139, pp. 41–48.CrossRefGoogle Scholar
  32. 32.
    Molinari, H.B., Marur, C.J., Daros, E., et al., Evaluation of the Stress-Inducible Production of Proline in Transgenic Sugarcane (Saccharum spp.): Osmotic Adjustment, Chlorophyll Fluorescence and Oxidative Stress, Physiol. Plant., 2007, vol. 130, pp. 218–226.CrossRefGoogle Scholar
  33. 33.
    Siripornadulsil, S., Traina, S., Verma, D.P.S., and Sayre, R.T., Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae, Plant Cell, 2002, vol. 14, pp. 2837–2847.PubMedCrossRefGoogle Scholar
  34. 34.
    Roosens, N.H., Bitar, F.A., Loenders, K., et al., Overexpression of Ornithine-D-Aminotransferase Increases Proline Biosynthesis and Confers Osmotolerance in Transgenic Plants, Mol. Breed, 2002, vol. 9, pp. 73–80.CrossRefGoogle Scholar
  35. 35.
    Nanjo, T., Kobayashi, M., Yoshiba, Y., et al., Antisence Suppression of Proline Degradation Improves Tolerance to Freezing and Salinity in Arabidopsis thaliana, FEBS Lett., 1999, vol. 461, pp. 205–210.PubMedCrossRefGoogle Scholar
  36. 36.
    Kolodyazhnaya, Ya.S., Titov, S.E., Kochetov, A.V., et al., Evaluation of Salt Tolerance in Nicotiana tabacum Plants Bearing an Antisense Suppressor of the Proline Dehydrogenase Gene, Genetika, 2006, vol. 42, no. 2, pp. 278–281.Google Scholar
  37. 37.
    Kolodyazhnaya, Ya.S., Kochetov, A.V., and Shumnyi, V.K., Transgenesis As a Method for Improving Plant Tolerance to High Concentrations of Heavy Metals, Usp. Sovrem. Biol., 2006, vol. 126, no. 5, pp. 456–461.Google Scholar
  38. 38.
    Kolodyazhnaya, Ya.S., Titov, S.E., Kochetov, A.V., et al., Tobacco Transformants Expressing Antisense Sequence of Proline Dehydrogenase Gene Possess Tolerance to Heavy Metals, Genetika, 2007, vol. 43, no. 7, pp. 994–998.Google Scholar
  39. 39.
    Paleg, L.G., Douglas, T.J., van Daal, A., and Keech, D.B., Proline, Betaine and Other Organic Solutes Protect Enzymes Against Heat Inactivation, Aust. J. Plant Physiol., 1998, vol. 8, no. 1, pp. 107–114.Google Scholar
  40. 40.
    Mamedov, M., Hayashi, H., and Murata, N., Effects of Glycinebetaine and Unsaturation of Membrane Lipids on Heat Stability of Photosynthetic Electron-Transport and Phosphorylation Reaction in Synechocystis PCC6803, Biochem. Biophys. Acta, 1993, vol. 1142, no. 1, pp. 1–5.CrossRefGoogle Scholar
  41. 41.
    Allakhverdieva, Y.M., Mamedov, M.D., and Gasanov, R.A., The Effect of Glycinebetaine on the Heat Stability of Photosynthetic Reactions in Thylakoid Membranes, Turk. J. Bot., 2001, vol. 25, pp. 11–17.Google Scholar
  42. 42.
    Hayashi, H., Alia, L., Mustardy, L., et al., Transformation of Arabidopsis thaliana with the codA Gene for Cholone Oxidase; Accumulation of Glycinebetaine and Enhanced Tolerance to Salt and Cold Stress, Plant J., 1997, vol. 12, no. 1, pp. 133–142.PubMedCrossRefGoogle Scholar
  43. 43.
    Alia, L., Hayashi, H., Chen, T., and Murata, N., Transformation with a Gene for Choline Oxidase Enhances the Cold Tolerance of Arabidopsis during Germination and Early Growth, Plant, Cell Environ., 1998, vol. 21, pp. 232–239.CrossRefGoogle Scholar
  44. 44.
    Lilius, G., Holmberg, N., and Bulow, L., Enhanced NaCl Stress Tolerance in Transgenic Tobacco Expressing Bacterial Choline Dehydrogenase, Biotechnology, 1996, vol. 14, no. 2, pp. 177–180.CrossRefGoogle Scholar
  45. 45.
    Ruidang, Q., Mei, S., Hui, Z., et al., Engineering of Enhanced Glycine Betaine Synthesis Improves Drought Tolerance in Maize, Plant Biotechnol. J., 2004, vol. 2, no. 6, pp. 477–486.CrossRefGoogle Scholar
  46. 46.
    Takabe, T., Hayashi, Y., Nakamura, T., et al., Genetic Engineering of Glycinebetaine Accumulation and Increased Salinity Tolerance in Plants, Abstr. 5th Intern. Congr. Plant Mol. Biol., Singapore, September 21–27, 1997, p. 667.Google Scholar
  47. 47.
    Yang, X., Liang, Z., and Lu, C., Genetic Engineering of the Biosynthesis of Glycinebetaine Enhances Photosynthesis Against High Temperature Stress in Transgenic Tobacco Plants, Plant Physiol., 2005, vol. 138, pp. 2299–2309.PubMedCrossRefGoogle Scholar
  48. 48.
    Murata, N., Enhancement of Tolerance to Multiple Stresses by Genetic Engineering, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, p. 34.Google Scholar
  49. 49.
    Sakamoto, A., Murata, A., and Murata, N., Metabolic Engineering of Rice Leading to Biosynthesis of Glycinebetaine and Tolerance to Salt and Cold, Plant. Mol. Biol., 1998, vol. 38, no. 6, pp. 1011–1019.PubMedCrossRefGoogle Scholar
  50. 50.
    Anderson, S.E., Bastola, D.R., and Minocha, S.C., Metabolism of Polyamines in Transgenic Cells of Carrot Expressing a Mouse Ornithine Decarboxylase CDNA, Plant Physiol., 1998, vol. 116, pp. 299–307.CrossRefGoogle Scholar
  51. 51.
    Kumria, R. and Rajam, M.V., Ornithine Decarboxylase Transgene in Tobacco Affects Poliamines, in Vitro Morphogenesis and Response to Salt Stress, J. Plant Physiol., 2002, vol. 159, pp. 983–990.CrossRefGoogle Scholar
  52. 52.
    Capell, T., Drakakaki, G., Topsom, L., et al., Effects of Drought Stress in Transgenic Rice (Oryza sativa L.) Plants Overexpressing the Oat Arginine Decarboxylase (ADC) cDNA, Abstr. IX Intern. Congr. Plant Pissue Cell Culture, Jerusalem, June 14–19, 1998, p. 133.Google Scholar
  53. 53.
    Roy, M. and Wu, R., Arginine Decarboxylase Transgene Expression and Analysis of Environmental Stress Tolerance in Transgenic Rice, Plant Sci., 2001, vol. 160, pp. 869–875.PubMedCrossRefGoogle Scholar
  54. 54.
    Roy, M. and Wu, R., Overexpression of S-Adenosylmethionine Decarboxylase Gene in Rice Increases Polyamine Level and Enhances Sodium Chloride-Stress Tolerance, Plant. Sci., 2002, vol. 163, pp. 987–992.CrossRefGoogle Scholar
  55. 55.
    Waie, B. and Rajam, M.V., Effect of Increased Polyamine Biosynthesis on Stress Response in Transgenic Tobacco by Introduction of Human S-Adenosylmethionine Gene, Plant Sci., 2003, vol. 164, pp. 727–734.CrossRefGoogle Scholar
  56. 56.
    Prabhavathi, V. and Rajam, M.V., Mannitol-Accumulating Transgenic Eggplants Exhibit Enhanced Resistance to Fungal Wilts, Plant Sci., 2007, vol. 173, pp. 50–54.CrossRefGoogle Scholar
  57. 57.
    Nelson, C.J. and Smith, D., Fructans: Their Nature and Occurrence, Curr. Top. Plant Biochem. Physiol., 1986, vol. 5, pp. 1–16.Google Scholar
  58. 58.
    Pilon-Smits, E.A., Terry, N., Sears, T., et al., Trehalose-Producing Transgenic Tobacco Plants Show Improved Growth Performance under Drought Stress, Plant Physiol., 1998, vol. 152, nos. 4/5, pp. 525–532.Google Scholar
  59. 59.
    Holmstrom, K.-O., Mandal, A., Mantyla, E., et al., Engineering Plant Adaptation to Environmental Stress, Abstr. 5th Intern. Congr. Plant Mol. Biol., Singapore, September 21–27, 1997, p. 634.Google Scholar
  60. 60.
    Davis, J.M., Fellman, J.K., and Loescher, W.H., Biosynthesis of Sucrose and Mannitol As a Function of Leaf Age in Celery (Apium graveolens L.), Plant Physiol., 1988, vol. 86, pp. 129–133.PubMedCrossRefGoogle Scholar
  61. 61.
    Pharr, D.M., Stoop, J.M.H., Williamson, J.D., et al., The Dual Role of Mannitol As Osmoprotectant and Photoassimilate in Celery, Hort. Sci., 1995, vol. 30, pp. 1182–1188.Google Scholar
  62. 62.
    Zhifang, G. and Loescher, W.H., Expression of a Celery Mannose 6-Hosphate Reductase in Arabidopsis thaliana Enhances Salt Tolerance and Induces Biosynthesis of Both Mannitol and a Glucosyl-Mannitol Dimer, Plant Cell Environ., 2003, vol. 26, no. 2, pp. 275–283.CrossRefGoogle Scholar
  63. 63.
    Shen, B., Jensen, R., and Bohnert, H., Mannitol Protects against Oxidation by Hydroxyl Radical, Plant Physiol., 1997, vol. 115, pp. 527–532.PubMedGoogle Scholar
  64. 64.
    Hwang, B.K., Kim, K.D., and Kim, Y.B., Carbohydrate Composition and Acid Invertase Activity in Rice Leaves Infected with Pyricularia oryzae, J. Phystopathol., 1989, vol. 125, pp. 124–132.CrossRefGoogle Scholar
  65. 65.
    Tarczynski, M.C., Jensen, R.G., and Bonhert, H.J., Expression of a Bacterial mtlD Gene in Transgenic Tobacco Leads to Production, Accumulation of Mannitol, Proc. Nat. Acad. Sci. USA, 1992, vol. 89, pp. 2600–2604.PubMedCrossRefGoogle Scholar
  66. 66.
    Park, J.M., Kwon, S.Y., Song, K.B., et al., Transgenic Tobacco Plants Expressing the Bacterial Levansucrase Gene Show Enhanced Tolerance to Osmotic Stress, J. Microbiol. Biotechnol., 1999, vol. 9, no. 2, pp. 212–218.Google Scholar
  67. 67.
    Sheveleva, E., Chmara, W., Bohnert, H.J., and Jensen, R.G., Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L., Plant Physiol., 1997, vol. 115, pp. 1211–1219.PubMedGoogle Scholar
  68. 68.
    Sheveleva, E.V., Marquez, S.E., Chmara, W., et al., Sorbitiol-6-Phosphate Dehydrogenase Expression in Transgenic Tobacco, Plant Physiol., 1998, vol. 117, pp. 831–839.PubMedCrossRefGoogle Scholar
  69. 69.
    Chiera, J.M., Streeter, J.G., and Finer, J.J., Ononitol and Pinitol Production in Transgenic Soybean Containing the Inositol Methyl Transferase Gene from Mesembryanthemum crystallinum, Plant Sci., 2006, vol. 171, pp. 647–654.CrossRefGoogle Scholar
  70. 70.
    Quimlo, C.A., Torrizo, L.B., Setter, T.L., et al., Enhancement of Submergence Tolerance in Transgenic Rice Plants Overexpressing Pyruvate Decarboxylase, J. Plant Physiol., 2000, vol. 156, pp. 516–521.Google Scholar
  71. 71.
    Djilianov, D., Yordanov, Y., Valkov, V., et al., Establishing Drought-Tolerant Tobacco — the Gene Transfer Approach, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, pp. 14–19.Google Scholar
  72. 72.
    Konstantinova, T., Parvanova, D., Atanassov, A., and Djilianoiv, D., Freezing Tolerant Tobacco, Transformed to Accumulate Osmoprotectants, Plant Sci., 2002, vol. 163, pp. 157–164.CrossRefGoogle Scholar
  73. 73.
    Parvanova, D., Popova, A., Zaharieva, I., et al., Low Temperature Tolerance of Tobacco Plants Transformed to Accumulate Proline, Fructans, or Glycine Betaine. Variable Chlorophyll Fluorescence Evidence, Photosynthetica, 2004, vol. 42, pp. 179–185.CrossRefGoogle Scholar
  74. 74.
    Thomashow, M.F., Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms, Annu. Rev. Plant Physiol., 1999, vol. 50, pp. 571–599.CrossRefGoogle Scholar
  75. 75.
    Hincha, D.K., Heber, U., and Schmitt, J.M., Proteins from Frost-Hardy Leaves Protect Thylakoids against Mechanical Freeze-Thaw Damage in Vitro, Planta, 1990, vol. 180, pp. 416–419.CrossRefGoogle Scholar
  76. 76.
    Artus, N.N., Uemura, M., Steponkus, P.L., et al., Constitutive Expression of the Cold Regulated Arabidopsis thaliana COR15a Gene Affects Both Chloroplast and Protoplast Freezing Tolerance, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, pp. 13404–13409.PubMedCrossRefGoogle Scholar
  77. 77.
    Clemens, S., Kim, E.J., Neumann, D., and Schroeder, J.I., Tolerance to Toxic Metals by Gene Family of Phytochelatin Synthases from Plants and Yeast, EMBO J., 1999, vol. 18, pp. 3325–3333.PubMedCrossRefGoogle Scholar
  78. 78.
    Ha, S.-B., Smith, A.P., Howden, R., et al., Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces Pombe, Plant Cell, 1999, vol. 11, pp. 1153–1164.PubMedCrossRefGoogle Scholar
  79. 79.
    Clemens, S., Molecular Mechanisms of Plant Metal Tolerance and Homeostasis, Planta, 2001, vol. 212, pp. 475–486.PubMedCrossRefGoogle Scholar
  80. 80.
    Kuznetsov, V.V. and Dmitrieva, G.A., Fiziologiya rastenii (Plant Physiology), Moscow: Vysshaya Shkola, 2005.Google Scholar
  81. 81.
    Tong, Y.-P., Kneer, R., and Zhu, Y.-G., Vacuolar Compartmentalization: A Second Generation Approach to Engineering Plants for Phytoremediation, Trends Plant Sci, 2004, vol. 9, no. 1, pp. 7–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Song, W.Y., Engineering Tolerance and Accumulation of Lead and Cadmium in Transgenic Plants, Nature Biotech, 2003, vol. 21, pp. 914–919.CrossRefGoogle Scholar
  83. 83.
    Tucker, S.L., Thornton, C.R., Tasker, K., et al., A Fungal Metallothionein Is Required for Pathogenicity of Magnametallothionein Is Required for Pathogenicity of Magnaporthe grisea, Plant Cell, 2004, vol. 16, pp. 1575–1588.PubMedCrossRefGoogle Scholar
  84. 84.
    Hasegawa, I., Terada, E., Sunairi, M., et al., Genetic Improvement of Heavy Metal Tolerance in Plants by Transfer of the Yeast Metallothionein Gene (CUP1), Plant Soil, 1997, vol. 196, pp. 277–281.CrossRefGoogle Scholar
  85. 85.
    Liu, J.R., Suh, M.C., and Choi, D., Phytoremediation of Cadmium Contamination: Overexpression of Metallothionein in Transgenic Tobacco Plants, Bundes Ges. und Heitsbl., Gesundheits-Forsch, Gecundheitsschutz, 2000, vol. 43, pp. 126–130.CrossRefGoogle Scholar
  86. 86.
    Ruiz, O.N., Hussein, H.S., Terry, N., and Daniell, H., Phytoremediation of Organomercurial Compounds via Chloroplast Genetic Engineering, Plant Physiol., 2003, vol. 132, no. 3, pp. 1344–1352.PubMedCrossRefGoogle Scholar
  87. 87.
    Ndong, C., Danyluk, J., Wilson, K.E., et al., Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses, Plant Physiol., 2002, vol. 129, pp. 1368–1381.PubMedCrossRefGoogle Scholar
  88. 88.
    Lal, S., Gulyani, V., and Khurana, P., Overexpression of HVA1 Gene from Barley Generates Tolerance to Salinity and Water Stress in Transgenic Mulberry (Morus indica), Transgenic Res., 2008, vol. 17, no. 4, pp. 651–653.PubMedCrossRefGoogle Scholar
  89. 89.
    Xu, D., Duan, X., Wang, B., et al., Expression of a Late Embryogenesis Abundant Protein Gene HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice, Plant Physiol., 1996, vol. 110, pp. 249–257.PubMedGoogle Scholar
  90. 90.
    Wang, Y., Jinag, J., Zhao, X., et al., A Novel LEA Gene from Tamarix androssowii Confers Drought Tolerance in Transgenic Tobacco, Plant Sci., 2006, vol. 171, no. 6, pp. 655–662.CrossRefGoogle Scholar
  91. 91.
    Baertlein, D.A., Lindow, S.E., Panopoulos, N.J., et al., Expression of a Bacterial Ice Nucleation Gene in Plants, Platn Physiol, 1993, vol. 100, no. 4, pp. 1730–1736.CrossRefGoogle Scholar
  92. 92.
    Kasuga, M., Liu, Q., Miura, S., et al., Improving Plant Drought, Salt, and Freezing Tolerance by Gene Transfer of a Single Stress-Inducible Transcription Factor, Nature Biotech., 1999, vol. 17, pp. 287–291.CrossRefGoogle Scholar
  93. 93.
    Chinnusamy, V., Jagendorf, A., and Zhu, J.K., Understanding and Improving Salt Tolerance in Plants, Crop Sci., 2005, vol. 45, pp. 437–448.CrossRefGoogle Scholar
  94. 94.
    Vinocur, B. and Altman, A., Recent Advance in Engineering Plant Tolerance to Abiotic Stress: Achievements and Limitations, Curr. Opin. Biotechnol., 2005, vol. 16, pp. 123–132.PubMedCrossRefGoogle Scholar
  95. 95.
    Bartels, D. and Sunkar, R., Drought and Salt Tolerance in Plants, Crit. Rev. Plant Sci., 2005, vol. 21, pp. 1–36.Google Scholar
  96. 96.
    Wei, W., Zhang, Y., Han, L., et al., A Novel WRKY Transcriptional Factor from Thlaspi caeulescens Negatively Regulates the Osmotic Stress Tolerance of Transgenic Tobacco, Plant Cell Rep., 2008, vol. 27, no. 4, pp. 795–803.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang, H., Hao, J., Chen, X., et al., Overexpression of Rice WRKY89 Enhances Ultraviolet B Tolerance and Disease Resistance in Rice Plants, Plant. Mol. Biol., 2007, vol. 65, no. 6, pp. 799–815.PubMedCrossRefGoogle Scholar
  98. 98.
    Vannini, C., Locatelli, F., Bracale, M., et al., Overexpression of the Rice Osmyb4 Gene Increases Chilling and Freezing Tolerance of Arabidopsis thaliana Plants, Plant J., 2004, vol. 37, pp. 115–127.PubMedCrossRefGoogle Scholar
  99. 99.
    Mattana, M., Biazzi, E., Consonni, R., et al., Overexpression of Osmyb4 Enhances Compatible Solute Accumulation and Increases Stress Tolerance of Arabidopsis thaliana, Physiol. Plant., 2005, vol. 125, pp. 212–223.CrossRefGoogle Scholar
  100. 100.
    Nelson, D.E., Repetti, P.P., Adams, T.R., et al., Plant Nuclear Factor Y (NF-Y) B Subunits Confer Drought Tolerance and Lead to Improved Corn Yields on Water-Limited Acres, Proc. Nat. Acad. Sci. USA, 2007, vol. 104, no. 42, pp. 16450–16455.PubMedCrossRefGoogle Scholar
  101. 101.
    Gilmour, S.J., Zarka, D.G., Stockinger, E.J., et al., Low Temperature Regulation of the Arabidopsis CBF Family of AP2 Transcriptional Activators as an Early Step in Cold-Induced COR Gene Expression, Plant J., 1998, vol. 16, pp. 433–442.PubMedCrossRefGoogle Scholar
  102. 102.
    Jaglo-Ottesen, J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F., Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance, Science, 1998, vol. 280, pp. 104–106.CrossRefGoogle Scholar
  103. 103.
    Buskirk, H. and Thomashow, M., Arabidopsis Transcription Factors Regulating Cold Acclimation, Physiol. Plant., 2006, vol. 126, pp. 72–80.CrossRefGoogle Scholar
  104. 104.
    Dhekney, S.A., Litz, R.E., Moraga, Amador, D.A., et al., Potential for Introducing Cold Tolerance Into Papaya by Transformation with C-Repeat Binding Factor (CBF) Genes, In Vitro Cell. Dev. Biol. Plant., 2007, vol. 43, pp. 195–202.CrossRefGoogle Scholar
  105. 105.
    Hsieh, T.H., Lee, J.T., Yang, P.T., et al., Heterology Expression of the Arabidopsis C-Repeat / Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stressed in Transgenic Tomato, Plant Physiol., 2002, vol. 129, pp. 1086–1094.PubMedCrossRefGoogle Scholar
  106. 106.
    Seong, E.S., Baek, K.-H., Oh, S.-K., et al., Induction of Enhanced Tolerance to Cold Stress and Disease by Over-Expression of the Pepper CAPIF1 Gene in Tomato, Physiol. Plant., 2007, vol. 129, no. 3, pp. 555–566.CrossRefGoogle Scholar
  107. 107.
    Winicov, I. and Bastola, D.R., Transgenic Overexpression of the Transcription Factor Alfin1 Enhances Expression of the Endogenous MsPRP2 Gene in Alfalfa and Improves Salinity Tolerance of the Plants, Plant Physiol., 1999, vol. 120, pp. 473–480.PubMedCrossRefGoogle Scholar
  108. 108.
    Liu, C.M., Muchhal, U.S., Uthappa, M., et al., Tomato Phosphate Transporter Genes Are Differentially Regulated in Plant Tissue by Phosphorous, Plant Physiol., 1998, vol. 116, pp. 91–99.PubMedCrossRefGoogle Scholar
  109. 109.
    Nakashima, K. and Yamaguchi-Shinozaki, K., Regulons Involved in Osmotic Stress-Responsive and Cold Stress-Responsive Gene Expression in Plants, Physiol. Plant., 2006, vol. 1126, pp. 62–71.CrossRefGoogle Scholar
  110. 110.
    Kasuga, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K., A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible Rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer, Plant Cell Physiol., 2004, vol. 45, no. 3, pp. 346–350.PubMedCrossRefGoogle Scholar
  111. 111.
    Pelegrineschi, A., Reynolds, M., Pacheco, M., et al., Stress-Induced Expression in Wheat of the Arabidopsis thaliana DREB1A Gene Delays Water Stress Symptoms under Green-House Conditions, Genome, 2004, vol. 47, pp. 493–500.CrossRefGoogle Scholar
  112. 112.
    Behnam, B., Kikuchi, A., Celebi-Toprak, F., et al., The Arabidopsis DREB1A Gene Driven by the Stress-Inducible rd29A Promoter Increases Salt-Stress Tolerance in Proportion to Its Copy Number in Tetrasomic Tetraploid Potato (Solanum tuberosum), Plant Biotechnol., 2006, vol. 23, pp. 169–177.Google Scholar
  113. 113.
    Bhatnagar-Mathur, P., Devi, M.J., Reddy, D.S., et al., Overexpression of Arabidopsis DREB1A Gene in Transgenic Peanut (Arachis hypogaea L.) for Improving Tolerance to Drought Stress, in From Functional Genomics of Model Organisms to Crop Plants for Global Health. Arthur A. Sackler Colloquia, Washington, DC: NAS, 2006.Google Scholar
  114. 114.
    Bhatnagar-Mathur, P., Devi, M.J., Reddy, D.S., et al., Stress-Inducible Expression of Arabidopsis thaliana DREB1A in Transgenic Peanut (Arachis Hypogaea L.) Increases Transpiration Efficiency under Water-Limiting Conditions, Plant Cell Rep., 2007, vol. 26, no. 12, pp. 2071–2082.PubMedCrossRefGoogle Scholar
  115. 115.
    Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J., Functional Analysis of Oxidative Stress-Activated Mitogen-Activated Protein Kinase Cascade in Plants, Proc. Nat. Acad. Sci. USA, 2000, vol. 97, pp. 2940–2945.PubMedCrossRefGoogle Scholar
  116. 116.
    Shou, H., Bordallo, P., and Wang, K., Expression of the Nicotiana Protein Kinase (NPK1) Enhanced Drought Tolerance in Transgenic Maize, J. Exp. Bot., 2004, vol. 55, pp. 1013–1019.PubMedCrossRefGoogle Scholar
  117. 117.
    Kulaeva, O.N. and Kuznetsov, V.V., Recent Advances and Prospects of Studies of the Mechanism of Action of Phytohormones and Their Role in Signaling Systems of an Entire Plant: An Analytical Review, Vestn. RFFI, 2004, issue 2, pp. 12–26.Google Scholar
  118. 118.
    Bartels, D., Frank, W., Bockel, C., et al., Genes Involved in Conferring Drought Tolerance in Callus of C. Plantagineum, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, p. 54.Google Scholar
  119. 119.
    Vanjildorj, E., Bae, T.W., Riu, K.Z., et al., Overexpression of Arabidopsis ABF3 Gene Enhances Tolerance to Drought and Cold in Transgenic Lettuce (Lactuca sativa), Plant Cell, Tissue Organ Culture, 2005, vol. 83, no. 1, pp. 41–50.CrossRefGoogle Scholar
  120. 120.
    Sergeeva, E., Shah, S., and Glick, B.R., Growth of Transgenic Canola (Brassica napus cv. Westar) Expressing a Bacterial 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Gene on High Concentrations of Salt, World J. Microbiol. Biotechnol., 2006, pp. 277–282.Google Scholar
  121. 121.
    Grichko, V.P. and Glick, B.R., Flooding Tolerance of Transgenic Tomato Plants Expressing the Bacterial Enzyme ACC Deaminase Controlled by the 35S, rolD of PRB-1b Promoter, Plant Physiol. Biochem., 2001, vol. 39, no. 1, pp. 19–25.CrossRefGoogle Scholar
  122. 122.
    Xu, K., Xu, X., Fukao, T., et al., Sub1A Is an Ethyleneresponsive-Factor-Like Gene That Confers Submergence Tolerance to Rice, Nature, 2006, vol. 442, pp. 705–708.PubMedCrossRefGoogle Scholar
  123. 123.
    Xu, Z.S., Xia, L.Q., Chen, M., et al., Isolation and Molecular Characterization of the Triticum aestivum L.: Ethylene-Responsive Factor 1 (TaERF1) That Increased Multiple Stress Tolerance, Plant Mol. Biol., 2007, vol. 65, no. 6, pp. 719–732.PubMedCrossRefGoogle Scholar
  124. 124.
    Pustovoitova, T.N., Bavrina, T.V., Lozhnikova, V.N., and Zhdanova, N.E., The Use of Transgenic Plants for Determination of the Role of Cytokines in Drought Resistance, Dokl. Akad. Nauk, 1997, vol. 354, no. 5, pp. 702–704.Google Scholar
  125. 125.
    Rivero, R.M., Kojima, M., Gepstein, A., et al., Delayed Leaf Senescence Induces Extreme Drought Tolerance in a Flowering Plant, Proc. Nat. Acad. Sci. USA, 2007, vol. 104, pp. 19631–19636.PubMedCrossRefGoogle Scholar
  126. 126.
    Tereshonok, D.V., Stepanova, A.Yu., Osipova, E.S., and Dolgikh, Yu.I., Genetic Transformation of Wheat, in Fiziologiya transgennogo rasteniya i problemy biobezopasnosti: Tez. Dokl. 2-go Vseros. Simp (Transgenic Plant Physiology and Safety Problems. Abstracts of Papers, 2nd All-Russia Symp.), Moscow, 2007, p. 82.Google Scholar
  127. 127.
    Popov, V.N., Kipaikina, N.V., Astakhova, N.V., and Trunova, T.I., Specific Features of Oxidative Stress in the Chilled Tobacco Plants Following Transformation with the desC Gene for Acyl-Lipid Δ9-Desaturase from Synechococcus vulcanus, Fiziol. Rast., 2006, vol. 53, no. 4, pp. 525–529.Google Scholar
  128. 128.
    Allen, R., Dissection of Oxidative Stress Tolerance using Transgenic Plants, Plant Physiol., 1995, vol. 107, pp. 1049–1054.PubMedGoogle Scholar
  129. 129.
    McKersie, B.D., Bowley, S.R., Harjanto, E., and Leprince, O., Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase, Plant Physiol., 1996, vol. 111, pp. 117–118.Google Scholar
  130. 130.
    Gupta, A.S., Heinen, J.L., Holaday, A.S., et al., Increased Resistance to Oxidation Stress in Transgenic Plants That Over-Express Chloroplastic Cu/Zn Superoxide Dismutase, Proc. Nat. Acad. Sci. USA, 1993, vol. 90, no. 4, pp. 1629–1633.PubMedCrossRefGoogle Scholar
  131. 131.
    Basu, U., Good, A.G., and Taylor, G.J., Transgenic Brassica napus Plants Overexpressing Aluminium-Induced Mitochondrial Manganese Superoxide Dismutase cDNA Are Resistant to Aluminium, Plant, Cell Environ., 2001, vol. 24, pp. 1269–1278.CrossRefGoogle Scholar
  132. 132.
    Tang, W., Charles T. M., and Newton R.J. Overexpression of the Pepper Transcription Factor CaPFl in Transgenic Virginia Pine (Pinus virginiana Mill.) Confers Multiple Stress Tolerance and Enhances Organ Growth, Plant. Mol. Biol., 2005, vol. 59, no. 4, pp. 603–617.PubMedCrossRefGoogle Scholar
  133. 133.
    Breusegem, E., Vranova, E., Willekens, H., et al., Oxidative Stress and Signalling in Plants, Abstr. II Intern. Symp. Plant Biotechnol., Kyiv, October 4–8, 1998, p. 5.Google Scholar
  134. 134.
    Van Camp, W., Capiau, K., Van Montagu, M., et al., Enhancement of Oxidative Stress Tolerance in Transgenic Tobacco Plants Overproducing Fe-Superoxide Dismutase in Chloroplasts, Plant Physiol., 1996, vol. 112, pp. 1703–1714.PubMedCrossRefGoogle Scholar
  135. 135.
    Oberschall, A., Deak, M., Torok, K., et al., A Novel Aldose/Aldehyde Reductase Protects Transgenic Plants Against Lipid Peroxidation under Chemical and Drought Stress, Plant J., 2000, vol. 24, pp. 437–446.PubMedCrossRefGoogle Scholar
  136. 136.
    Venkateswari, J., Kanrar, S., Bansal, K.C., et al., Overexpression of Annexin-Like Protein Protects Indian Mustard Against Drought, Salt, and Alternaria Stresses, Abstr. 5th Intern. Congr. Plant Mol. Biol., Singapore, September 21–27, 1997, p. 360.Google Scholar
  137. 137.
    Horvath, G.V., Oberschall, A., Deak, M., et al., Overproduction of Two Stress-Induced Alfalfa Proteins Provides Tolerance Against Wide Range of Stresses in Transgenic Plants, Abstr. II Intern. Sympos. Plant Biotechnol., Kyiv, October 4—8, 1998, p. 8.Google Scholar
  138. 138.
    Neumann, D., Nover, L., Parthier, B., et al., Heat Shock and Other Stress Response Systems of Plants, Biol. Zentralb, 1989, vol. 108, no. 1, pp. 1–146.Google Scholar
  139. 139.
    Lee, J.H., Hubel, A., and Schoffl, F., Derepression of the Activity of Genetically Engineered Heat Shock Factor Causes Constitutive Synthesis of Heat Shock Proteins and Increased Thermotolerance in Transgenic Arabidopsis, Plant J., 1995, vol. 8, pp. 603–612.PubMedCrossRefGoogle Scholar
  140. 140.
    Lurie, S., Shatai, S., Schoffl, F., and Barg, R., Fruits of Tomato Plants Expressing the Chimeric HSF-GUS Gene Manifest Increased Tolerance to High and Low Temperature Stresses, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, p. 160.Google Scholar
  141. 141.
    Shi, H., Lee, B.H., Wu, S.J., and Zhu, J.K., Overexpression of a Plasma Membrane Na+/H+ Antiporter Gene Improves Salt Tolerance in Arabidopsis thaliana, Nat. Biotechnol., 2003, vol. 21, pp. 81–85.PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang, H.-X., Hodson, J., Williams, J.P., and Blumwald, E., Engineering Salt-Tolerant Brassica Plants: Characterization of Yield and Seed Oil Quality in Transgenic Plants with Increased Vacuolar Sodium Accumulation, Proc. Nat. Acad. Sci. USA, 2001, vol. 98, pp. 12832–12836.PubMedCrossRefGoogle Scholar
  143. 143.
    Yang, A.F., Duan, X.G., Gu, X.F., et al., Efficient Transformation of Beet (Beta vulgaris L.) and Production of Plants with Improved Salt-Tolerance, Plant Cell, Tissue Organ Culture, 2005, vol. 83, pp. 259–270.CrossRefGoogle Scholar
  144. 144.
    Espinosa-Ruiz, A., Belles, J.M., Serrano, R., and Gulianez-Macia, F.H., Arabidopsis thaliana AtHAL3: a Flavoprotein Related to Salt and Osmotic Tolerance and Plant Growth, Plant J., 1999, vol. 205, pp. 529–539.CrossRefGoogle Scholar
  145. 145.
    Volarin, M.S., Santa-Cruz, A., and Caro, M., Relationship between the Salt Responses of Tomato Transgenic Plants and Calluses Derived from Them, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, p. 132.Google Scholar
  146. 146.
    Shiraishi, E., Inouhe, M., Joho, M., and Tohoyama, H., The Cadmium-Resistant Gene, CAD2, Which Is a Mutated Putative Copper-Transporter Gene (PCA1), Controls the Intracellular Cadmium-Level in the Yeast S. Cerevisiae, Curr. Genet., 2000, vol. 37, pp. 79–86.PubMedCrossRefGoogle Scholar
  147. 147.
    Lee, J., Bae, H., Jeong, J., et al., Functional Expression of a Bacterial Heavy Metal Transporter in Arabidopsis Enhances Resistance to and Decreases Uptake of Heavy Metal, Plant Physiol., 2003, vol. 133, pp. 589–596.PubMedCrossRefGoogle Scholar
  148. 148.
    Arazi, T., Sunkar, R., Kaplan, B., and Fromm, H., A Tobacco Plasma Membrane Calmodulin-Binding Transporter Confers Ni2+ Tolerance and Pb2+ Hypersensitivity in Transgenic Plants, Plant J., 1999, vol. 20, no. 2, pp. 171–182.PubMedCrossRefGoogle Scholar
  149. 149.
    Hirschi, K.D., Korenkov, V.D., Wilganowski, N.L., and Wagner, G.J., Expression of Arabidopsis CAS2 in Tobacco. Altered Metal Accumulation and Increased Manganese Tolerance, Plant Physiol., 2000, vol. 124, pp. 125–133.PubMedCrossRefGoogle Scholar
  150. 150.
    Cui, X.H., Hao, F.S., Chen, H., et al., Expression of the Vicia faba VfPIPl Gene in Arabidopsis thaliana Plants Improves Their Drought Resistance, J. Plant Res., 2008, vol. 121, no. 2, pp. 207–214.PubMedCrossRefGoogle Scholar
  151. 151.
    Yang, S., Reddy, M.R., Maggio, A., and Watad, A.A., Salt Tolerance of Tobacco Plants Is Mediated by Yeast Calcineurin, Plant Biol. 97 Annu. Meet. Amer. Soc. Plant Physiol. and Canad. Soc. Plant Physiol., August 2–6, 1997, Vancouver, Plant Physiol., 1997, vol. 114, no. 3, p. 135.Google Scholar
  152. 152.
    Grover, A., Sahi, C., and Sanan, A., Timing Abiotic Stresses in Plants Through Genetic Engineering: Current Strategies and Perspective, Plant Sci., 1999, vol. 143, pp. 101–111.CrossRefGoogle Scholar
  153. 153.
    Wang, W., Levin, N., Tzfira, T., et al., Plant Tolerance to Water and Salt Stress: The Expression Pattern of a Water Stress Responsive Protein (BspA) in Transgenic Aspen Plants, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, p. 55.Google Scholar
  154. 154.
    Wang, W.X., Pelah, D., Alergand, T., et al., Characterization of SP1, a Stress-Responsive, Boiling-Soluble, Homo-Oligomeric Protein from Aspen (Populus tremula L.), Plant Physiol., 2002, vol. 130, pp. 865–875.PubMedCrossRefGoogle Scholar
  155. 155.
    Wang, W.X., Barak, T., Vinocur, B., et al., Abiotic Resistance and Chaperones: Possible Physiological Role of SPI, a Stable and Stabilizing Protein from Populus, in Plant Biotechnology 2000 and Beyond, Vasil, I.K., Ed., Dordrecht: Kluwer, 2003, pp. 439–443.Google Scholar
  156. 156.
    Roy, R., Purty, R.S., Agrawal, V., and Gupta, S.C., Transformation of Tomato Cultivar Pusa Ruby with BspA Gene from Populus tremula for Drought Tolerance, Plant Cell, Tissue Organ Culture, 2006, vol. 84, pp. 56–68.CrossRefGoogle Scholar
  157. 157.
    Qiao, J., Mitsuhara, I., Yazaki, Y., et al., Enhanced Resistance to Salt, Cold and Wound Stresses by Overproduction of Animal Cell Death Suppressors Bcl-XL and Ced-9 in Tobacco Cells-Their Possible Contribution through Improved Function of Organella, Plant Cell Physiol., 2002, vol. 43, pp. 992–1005.PubMedCrossRefGoogle Scholar
  158. 158.
    Kwon, Y., Kim, S.-H., Jung, M.S., et al., Arabidopsis hot2 Encodes an Endochitinase-Like Protein That Is Essential for Tolerance to Heat, Salt and Drought Stresses, Plant J., 2007, vol. 49, pp. 184–193.PubMedCrossRefGoogle Scholar
  159. 159.
    Suslow, T.V. and Jones, J.D.G., Chitinase-Producing Plants, US Patent No. 5 633 450, DNA Plant Technol. Corp. no 566347, Appl. 01.12.95, Publ. 27.05.97, AOIH 5/00, C12 No. 15/56.Google Scholar
  160. 160.
    Gilad, A., Kalifa, Y., Ibragimov, V., and Bar-Zvi, D., The Water-Stress and Salt-Stress Regulated Plant Gene Encodes a Nuclear DNA-Binding Protein, Abstr. IX Intern. Congr. Plant Tissue Cell Culture, Jerusalem, June 14–19, 1998, p. 129.Google Scholar
  161. 161.
    Tang, L., Kim, M.D., Yang, K.-S., et al., Enhanced Tolerance of Transgenic Potato Plants Overexpressing Nucleoside Diphosphate Kinase 2 Against Multiple Environmental Stresses, Transgenic Res., 2008, vol. 17, no. 4, pp. 705–715.PubMedCrossRefGoogle Scholar
  162. 162.
    Sanan-Mishra, N., Pham, X.H., Sopory, S.K., and Tuteja, N., Pea DAN Helicase 45 Overexpression in Tobacco Confers High Salinity Tolerance without Affecting Yield, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, no. 2, pp. 509–514.PubMedCrossRefGoogle Scholar
  163. 163.
    Tuteja, N., Unwinding after High Salinity Stress: Development of Salinity Tolerant Plant Without Affecting Yield, ISB News Report, 2005 (
  164. 164.
    Zhang, M., Barg, R., Yin, M., et al., Modulated Fatty Acid Desaturation via Overexpression of Two Distinct — 3 Desaturases Differentially Alters Tolerance to Variance to Various Abiotic Stresses in Transgenic Tobacco Cells and Plants, Plant J., 2005, vol. 44, pp. 361–371.PubMedCrossRefGoogle Scholar
  165. 165.
    Jaglo, K.R., Kleff, S., Amundsen, K.L., et al., Components of the Arabidopsis C-Repeat / Dehydration-Responsive Element Binding Factor Cold-Response Pathway Are Conserved in Brassica napus and Other Plant Species, Plant Physiol., 2001, vol. 127, pp. 910–917.PubMedCrossRefGoogle Scholar
  166. 166.
    Gilmour, S.J., Sebolt, A.M., Salazar, M.P., et al., Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation, Plant Physiol., 2000, vol. 124, pp. 1854–1865.PubMedCrossRefGoogle Scholar
  167. 167.
    Haake, V., Cook, D., Riechmann, J.L., et al., Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis, Plant Physiol., 2002, vol. 130, pp. 639–648.PubMedCrossRefGoogle Scholar
  168. 168.
    Prandl, R., Hinderhofer, K., Eggers-Schumacher, G., and Schoffl, F., HSF3, a New Heat Shock Factor from Arabidopsis thaliana, Derepresses the Heat Shock Response and Confers Thermotolerance When Overexpressed in Transgenic Plants, Mol. Gen. Genet., 1998, vol. 258, pp. 269–278.PubMedCrossRefGoogle Scholar
  169. 169.
    Mishra, S.K., Tripp, J., Winkelhaus, S., et al., In the Complex Family of Heat Stress Transcription Factors, HsfA1 Has a Unique Role as Master Regulator of Thermotoleranee in Tomato, Gene Dev., 2002, vol. 16, pp. 1555–1567.PubMedCrossRefGoogle Scholar
  170. 170.
    Kim, B.-G., Waadt, R., Cheong, Y.H., et al., The Calcium Sensor CBL10 Mediates Salt Tolerance by Regulating Ion Homeostasis in Arabidopsis, Plant J., 2007, vol. 52, pp. 473–484.PubMedCrossRefGoogle Scholar
  171. 171.
    Sivamani, E., Bahleldin, A., Wraithc, J.M., et al., Improved Biomass Productivity and Water Use Efficiency Under Water Deficit Conditions in Transgenic Wheat Constitutively Expressing the Barley HVA1 Gene, Plant Sci., 2000, vol. 155, pp. 1–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Steponkus, P.L., Uemura, M., Joseph, R.A., et al., Mode of Action of the COR15a Gene on the Freezing Tolerance of Arabidopsis thaliana, Proc. Nat. Acad. Sci. USA, 1998, vol. 95, pp. 14570–14575.PubMedCrossRefGoogle Scholar
  173. 173.
    Tarczynski, M.C., Jensen, R.G., and Bohnert, H.J., Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol, Science, 1993, vol. 259, pp. 508–510.PubMedCrossRefGoogle Scholar
  174. 174.
    McKersie, B.D., Murnaghan, J., Jones, K.S., and Bowley, S.R., Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance, Plant Physiol., 2000, vol. 122, pp. 1427–1438.PubMedCrossRefGoogle Scholar
  175. 175.
    Katiyar-Agarwal, S., Agarwal, M., and Grover, A., Heat-Tolerant Basmati Rice Engineered by Over-Expression of hsp101 Plant. Mol. Biol., 2003, vol. 51, pp. 677–686.CrossRefGoogle Scholar
  176. 176.
    Sugino, M., Hibino, T., Tanaka, Y., et al., Overexpression of DnaK from a Halotolerant Cyanobacterium Aphanothece halophytice Acquires Resistance to Salt Stress in Transgenic Tobacco Plants, Plant Sci., 1999, vol. 146, pp. 81–88.CrossRefGoogle Scholar
  177. 177.
    Il’ina, E.L., Egorova, I.A., Monakhova, V.A., et al., Creation and Study of a Collection of Transgenic Radish (Rarhanus sativus L.) Expressing Some Agrobacterial T-DNA Genes, in Fiziologiya Transgennogo Rasteniya i Problemy Biobezopasnosti: Tez. Dokl. 2-go Vseros. Simp. (Transgenic Plant Physiology and Safety Problems. Abstracts of Papers, 2nd All-Russia Symp.), Moscow, 2007, p. 13.Google Scholar
  178. 178.
    Bordas, M., Montesinos, S., Debauza, M., et al., Transfer of the Yeast Salt Tolerance Gene HAL1 to Cucumis melo L. Cultivars and in Vitro Evaluation of Salt Tolerance, Transgenic Res. (Moscow), 1997, vol. 6, no. 1, pp. 41–50.Google Scholar
  179. 179.
    Gisbert, C., Rus, A.M., Bolarin, M.C., et al., The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato, Plant Physiol., 2000, vol. 123, pp. 393–402.PubMedCrossRefGoogle Scholar
  180. 180.
    Katiyar-Agarwal, S., Agarwal, M., and Grower, A., Emerging Trends in Agricultural Biotechnology Research: Use of Abiotic Stress Induced Promoter to Drive Expression of a Stress Resistance Gene in the Transgenic System Leads to High Level Stress Tolerance Associated with Minimal Negative Effects on Growth, Curr. Sci., 1999, vol. 77, pp. 1577–1579.Google Scholar
  181. 181.
    McCue, K.F. and Hanson, A.D., Drought and Salt Tolerance: Towards Understanding and Application, Trends Biotechnol., 1990, vol. 8, pp. 358–362.CrossRefGoogle Scholar
  182. 182.
    Bowler, C., Van Montagu, M., and Inze, D., Superoxide Dismutase and Stress Tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, vol. 43, pp. 83–116.CrossRefGoogle Scholar
  183. 183.
    Vierling, E. and Kimpel, J.A., Plant Responses to Environmental Stress, Curr. Opin. Biotechnol., 1992, vol. 3, no. 2, pp. 164–70.PubMedCrossRefGoogle Scholar
  184. 184.
    Ingram, J. and Bartels, D., The Molecular Basis of Dehydration Tolerance in Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, pp. 377–403.PubMedCrossRefGoogle Scholar
  185. 185.
    Zhu, J.K., Hasegawa, P.M., and Bressan, R.A., Molecular Aspects of Osmotic Stress in Plants, Crit. Rev. Plant Sci., 1997, vol. 16, pp. 253–277.CrossRefGoogle Scholar
  186. 186.
    Smirnoff, N., Plant Resistance to Environmental Stress, Curr. Opin. Biotechnol., 1998, vol. 9, pp. 214–219.PubMedCrossRefGoogle Scholar
  187. 187.
    Hare, P.D., Cress, W.A., and Van Staden, J., Dissecting the Roles of Osmolyte Accumulation During Stress, Plant, Cell Environ., 1998, vol. 21, pp. 535–553.CrossRefGoogle Scholar
  188. 188.
    Bohnert, H.J. and Sheveleva, E., Plant Stress Adaptations, Making Metabolism Move, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 267–274.PubMedCrossRefGoogle Scholar
  189. 189.
    Morimoto, R.J., Regulation of the Heat Shock Transcriptional Response: Cross Talk between a Family of Heat Shock Factors, Molecular Chaperones and Negative Regulators, Genes Dev., 1998, vol. 12, pp. 3788–3796.PubMedCrossRefGoogle Scholar
  190. 190.
    Serrano, R., Culianez-Macia, F.A., and Moreno, V., Genetic Engineering of Salt and Drought Tolerance with Yeast Regulatory Genes, Sci. Hort, 1999, vol. 78, pp. 261–269.CrossRefGoogle Scholar
  191. 191.
    Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., and Bohnert, H.J., Plant Cellular and Molecular Responses to High Salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 463–499.PubMedCrossRefGoogle Scholar
  192. 192.
    Zhu, J.-K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 8, no. 2, pp. 66–71.CrossRefGoogle Scholar
  193. 193.
    Mittler, R., Oxidative Stress, Antioxidants, and Stress Tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.PubMedCrossRefGoogle Scholar
  194. 194.
    Sakamoto T. and Murata, N., Regulation of the Desaturation of Fatty Acids and Its Role in Tolerance to Cold and Salt Stress, Curr. Opin. Microbiol., 2002, vol. 5, no. 2, pp. 208–210.PubMedCrossRefGoogle Scholar
  195. 195.
    Xiong, L., Schumaker, K.S., and Zhu, J.K., Cell Signalling during Cold, Drought and Salt Stress, Plant Cell, 2002, vol. 14, pp. 165–183.CrossRefGoogle Scholar
  196. 196.
    Titov, S.E., Kochetov, A.V., Koval’, V.S., and Shumnyi, V.K., Transgenesis as a Method of Obtaining Plant Resistant to Abiotic Stresses, Usp. Sovrem. Biol., 2003, vol. 123, pp. 487–494.Google Scholar
  197. 197.
    Wang, W., Vinocur, B., and Altman, A., Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance, Planta, 2003, vol. 218, pp. 1–14.PubMedCrossRefGoogle Scholar
  198. 198.
    Munns, R., Genes and Salt Tolerance: Bringing Them Together, New Phytol., 2005, vol. 167, pp. 645–663.PubMedCrossRefGoogle Scholar
  199. 199.
    Bhatnagar-Mathur, P., Valdez, V., and Sharma, K.K., Transgenic Approaches for Abiotic Stress Tolerance in Plants: Retrospects and Prospects, Plant Cell Rep., 2008, vol. 27, no. 3, pp. 411–424.PubMedCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • Ya. S. Kolodyazhnaya
    • 2
    Email author
  • N. K. Kutsokon
    • 3
  • B. A. Levenko
    • 1
  • O. S. Syutikova
    • 1
  • D. B. Rakhmetov
    • 1
  • A. V. Kochetov
    • 2
  1. 1.N. N. Gryshko National Botanical GardenNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Institute of Cell Biology and Genetic EngineeringNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations