Skip to main content
Log in

A Pulsed Volume Discharge Localized in a Vortex Zone behind a Wedge in a Supersonic Flow

  • Chemical Physics, Physical Kinetics, and Plasma Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The development of a pulsed volume discharge with pre-ionization in a non-uniform supersonic air flow near the wedge in the shock tube channel and the gas-dynamic flow that occur after the discharge has been experimentally studied. Plasma configurations that occur near the bottom of the wedge were investigated for the discharge initiated at various stages of an unsteady flow. The self-localization conditions of a volume discharge in the vortex zone behind the wedge are analyzed at the incident shock wave Mach numbers of 2.6–3.5 (at the flow Mach numbers up to 1.50 and a density up to0.15 kg/m3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Fomin, P. K. Tretyakov, and J.-R Taran, Aerosp. Sci. Technol. 8, 411 (2004). https://doi.org/10.1016/j.ast.2004.01.005

    Article  Google Scholar 

  2. P. Yu. Georgievskii and V. A. Levin, Teplofiz. Vys. Temp. 48(s1), 77 (2010).

    Google Scholar 

  3. A. A. Zheltovodov and E. A. Pimonov, Tech. Phys. Lett. 43, 739 (2017). https://doi.org/10.1134/S1063785017080284

    Article  ADS  Google Scholar 

  4. N. Benard and E. Moreau, Exp Fluids 55, 1846 (2014). https://doi.org/10.1007/s00348-014-1846-x

    Article  Google Scholar 

  5. A. Russell, H. Zare-Behtash, and K. Kontis, J. Electrost. 80, 34 (2016). doi https://doi.org/10.1016/j.elstat.2016.01.004

    Article  Google Scholar 

  6. C. W. Kuo, J. Cluts, and M. Samimy, Exp. Fluids 58, 35 (2017). doi https://doi.org/10.1007/s00348-017-2329-7

    Article  Google Scholar 

  7. A. Houpt, B. Hedlund, S. Leonov, T. Ombrello, and C. Carter, Exp. Fluids 58, 25 (2017). https://doi.org/10.1007/s00348-016-2295-5

    Article  Google Scholar 

  8. I. V. Mursenkova, I. A. Znamenskaya, and A. E. Lutsky, J. Phys. D 51, 105201 (2018). https://doi.org/10.1088/1361-6463/aaa838

    Article  ADS  Google Scholar 

  9. A. Cristofolini, G. Neretti, F. Roveda, and C. A. Borghi, J. Appl. Phys. 111, 033302 (2012). https://doi.org/10.1063/1.3682488

    Article  ADS  Google Scholar 

  10. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013). doi https://doi.org/10.1016/j.pecs.2012.05.003

    Article  Google Scholar 

  11. V. M. Shibkov, A. F. Aleksandrov, V. A. Chernikov, et al., J. Propul. Power 25, 123 (2009). https://doi.org/10.2514/L24803

    Article  Google Scholar 

  12. A. Montello, D. Burnette, M. Nishihara, W. R. Lempert, et al., J. Fluid Sci. Technol. 8, 147 (2010). https://doi.org/10.1299/jfst.8.147

    Article  Google Scholar 

  13. I. A. Doroshchenko, I. A. Znamenskaya, A. Y. Kuznetsov, I. V. Mursenkova, and N. N. Sysoev, Tech. Phys. 63, 662 (2018). https://doi.org/10.1134/S1063784218050067

    Article  Google Scholar 

  14. P. Y. Georgievskiy, V. A. Levin, and O. G. Sutyrin, Tech. Phys. Lett. 44, 905 (2018). https://doi.org/10.1134/S1063785018100231

    Article  ADS  Google Scholar 

  15. P. K. Tret’yakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V.I. Yakovlev, Dokl. Phys. 41, 566 (1996).

    ADS  Google Scholar 

  16. S. M. Bosnyakov, A. A. Babulin, V. V. Vlasenko, M. F. Engulatova, S. V. Matyash, and S. V. Mikhaylov, Math. Models Comput. Simul. 8, 238 (2016). https://doi.org/10.1134/S2070048216030042

    Article  MathSciNet  Google Scholar 

  17. G. S. Settles and L. J. Dodson, AIAA J. 32, 1377 (1994). https://arc.aiaa.org/doi/pdf/10.2514/3.12205.

    Article  ADS  Google Scholar 

  18. A. A. Zheltovodov, AIAA Paper No. 96-1977 (American Inst. of Aeronautics and Astronautics, 1996). https://doi.org/10.2514/6.1996-1977

  19. A. B. Gorshkov, Fluid Dyn. 45, 126 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  20. I. A. Znamenskaya, I. E. Ivanov, I. A. Kryukov, and T. A. Kuli-Zade, Fluid Dyn. 40, 462 (2005). https://doi.org/10.1007/s10697-005-0085-5

    Article  ADS  Google Scholar 

  21. I. A. Znamenskaya, I. A. Doroshenko, D. S. Naumov, et al., Nauchn. Vizualizatsiya 9(3), 77 (2017).

    Google Scholar 

  22. I. V. Mursenkova, A. S. Sazonov, and Yu. Liao, Tech. Phys. Lett. 44, 157 (2018). https://doi.org/10.1134/S1063785018020256

    Article  Google Scholar 

  23. N. O. Arkhipov, I. A. Znamenskaya, I. V. Mursenkova, I. Yu. Ostapenko, and N. N. Sysoev, Moscow Univ. Phys. Bull. 69, 96 (2014). https://doi.org/10.3103/S0027134914010020

    Article  ADS  Google Scholar 

  24. T. V. Bazhenova and L. G. Gvozdeva, Nonstationary Interactions of Shock Waves (Nauka, Moscow, 1977).

    Google Scholar 

  25. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

    Google Scholar 

  26. Yu. D. Korolev and G. A. Mesyats, Physics of Pulse Gas Breakdown (Nauka, Moscow, 1991).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-08-00560).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Znamenskaya, I. V. Mursenkova, D. S. Naumov or N. N. Sysoev.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 5, pp. 88–93.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Znamenskaya, I.A., Mursenkova, I.V., Naumov, D.S. et al. A Pulsed Volume Discharge Localized in a Vortex Zone behind a Wedge in a Supersonic Flow. Moscow Univ. Phys. 74, 514–519 (2019). https://doi.org/10.3103/S0027134919050199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919050199

Keywords

Navigation