Skip to main content
Log in

New Design of a 4-Bit Ripple Carry Adder on a Nano-Scale Quantum-Dot Cellular Automata

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Quantum-dot cellular automata (QCA) is a new computing paradigm based on cellular automata with appealing characteristics such as high speed, low power consumption, and high density for realizing quantum computers. On the other hand, an adder is the primary circuit in any digital processor and ripple carry adder is a basic building block of other adders. Therefore, efficient design of this type of adder may lead to the efficient design of the whole system. So, in this paper, a new design of ripple carry adder is proposed to decrease the number of cells and area as possible. Simulation results using QCA Designer verifies the correctness of the proposed circuit and validates its efficiency in terms of a number of cells and area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Angizi, S. Sarmadi, S. Sayedsalehi, and K. Navi, Microelectron. J. 46, 43 (2015).

    Article  Google Scholar 

  2. M. R. Gadim and N. J. Navimipour, J. Circuits, Syst. Comput. 27, 1830005 (2018).

    Google Scholar 

  3. W. Porod, J. Franklin Inst. 334, 1147 (1997).

    Article  Google Scholar 

  4. M. R. Gadim and N. J. Navimipour, Microsyst. Technol. 24, 1295 (2018).

    Article  Google Scholar 

  5. R. Chakrabarty, D. R. Chowdhury, S. Das, and S. Ghosh, Proc. Int. Conf. and Workshop on Computing and Communication, Vancouver, Canada, 2015. doi https://doi.org/10.1109/IEMCON.2015.7344529

  6. S. Afrooz and N. J. Navimipour, Int. J. Theor. Phys. 57, 2598 (2018).

    Article  Google Scholar 

  7. S. Seyedi and N. J. Navimipour, Optik 158, 243 (2018).

    Article  ADS  Google Scholar 

  8. S. Afrooz and N. J. Navimipour, J. Circuits, Syst. Comput. 26, 1730004 (2017).

    Google Scholar 

  9. S. Seyedi and N. J. Navimipour, Optik 158, 243 (2018).

    Article  ADS  Google Scholar 

  10. T. Hime et al., Science 314, 1427 (2006).

    Article  ADS  Google Scholar 

  11. A. Vetteth, K. Walus, V. S. Dimitrov, and G. A. Jullien, Proc. IEEE Emerging Telecommunications Technologies Conf., Dallas, United States, 2002, p. 2.

  12. M. Hosseini, M. R. R. Kahkha, A. Fakhri, S. Tahami, and M. J. Lariche, J. Photochem. Photobiol. B 185, 24 (2018).

    Article  Google Scholar 

  13. B. K. Mohanty and S. K. Patel, IEEE Trans. Circuits Syst., II 61, 418 (2014).

    Article  Google Scholar 

  14. S. Seyedi and N. J. Navimipour, Nano Commun. Networks 16, 1 (2018).

    Article  Google Scholar 

  15. P. Prakash and A. K. Saxena, Proc. Int. Conf. on Advances in Recent Technologies in Communication and Computing, Kottayam, Kerala, India, 2009, p. 899.

  16. M. Thakur and J. Ashraf, Int. J. Sci. Eng. Res. 3 (10) (2012).

  17. S. Timarchi and K. Navi, Int. J. Comput. Inf. Eng. 2, 200816 (2008).

    Google Scholar 

  18. N. Sonare, Design and Simulation Study of Coplanar Full Adder and Ripple Carry Adder Using Quantum Dot Cellular Automata (2018).

  19. M. Balali and A. Rezai, Int. J. Theor. Phys. 57, 1948 (2018).

    Article  Google Scholar 

  20. H. Rashidi and A. Rezai, J. Eng. 1, 394 (2017).

    Google Scholar 

  21. D. Abedi, G. Jaberipur, and M. Sangsefidi, IEEE Trans. Nanotechnol. 14, 497 (2015).

    Article  ADS  Google Scholar 

  22. M. Mohammadi, M. Mohammadi, and S. Gorgin, Microelectron. J. 50, 35 (2016).

    Article  Google Scholar 

  23. S. T. Y. Chan, C. F. Chau, and A. bin Ghazali, Proc. IEEE Int. Conf. on Circuits and Systems, Kuala Lumpur, Malaysia, 2013, p. 33.

  24. M. Balali, A. Rezai, H. Balali, F. Rabiei, and S. Emadi, Results Phys. 7, 1389 (2017).

    Article  ADS  Google Scholar 

  25. S. Hashemi and K. Navi, Proc. Mater. Sci. 11, 376 (2015).

    Article  Google Scholar 

  26. C. Labrado and H. Thapliyal, Electron. Lett. 52, 464 (2016).

    Article  Google Scholar 

  27. S. Senthilnathan and S. Kumaravel, ARPN J. Eng. Appl. Sci. 13 (8), (22018).

  28. M. Ottavi, L. Schiano, F. Lombardi, and D. Tougaw, J. Emerging Technol. Comput. Syst. 2, 243 (2006).

    Article  Google Scholar 

  29. M. T. Niemier, Master of Science Thesis (Univ. of Notre Dame, 2000).

  30. H. J. Anderson, Master of Science Thesis (Univ. of Virginia, 2012).

  31. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, IEEE Trans. Nanotechnol. 3, 26 (2004).

    Article  ADS  Google Scholar 

  32. R. Sherizadeh and N. J. Navimipour, Optik 158, 477 (2018).

    Article  ADS  Google Scholar 

  33. T. J. Dysart, MasterofScience Thesis (Univ. of Notre Dame, 2005).

  34. M. Berarzadeh, S. Mohammadyan, K. Navi, and N. Bagherzadeh, J. Comput. Electron. 16, 875 (2017).

    Article  Google Scholar 

  35. M. Momenzadeh, M. Ottavi, and F. Lombardi, Proc. 20th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, Monterey, United States, 2005, p. 208.

  36. C. S. Lent, P. D. Tougaw, and W. Porod, Proc. of Workshop on Physics and Computation, Dallas, United States, 1994, p. 5.

  37. M. Khatun, T. Barclay, I. Sturzu, and P. Tougaw, J. Phys. D 39, 1489 (2006).

    Article  ADS  Google Scholar 

  38. J. Jiao, G. J. Long, F. Grandjean, A. M. Beatty, and T. P. Fehlner, J. Am. Chem. Soc. 125, 7522 (2003).

    Article  Google Scholar 

  39. Y. Lu and C. S. Lent, J. Comput. Electron. 4, 115 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedi, S., Ghanbari, A. & Navimipour, N.J. New Design of a 4-Bit Ripple Carry Adder on a Nano-Scale Quantum-Dot Cellular Automata. Moscow Univ. Phys. 74, 494–501 (2019). https://doi.org/10.3103/S0027134919050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919050126

Keywords

Navigation