Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 702–709 | Cite as

The Effect of the Earth’s Rotation on Tsunami Waves Triggered by the 2013 Deep-Focus Okhotsk Sea Earthquake

  • M. A. NosovEmail author
  • S. V. KolesovEmail author
  • G. N. NurislamovaEmail author
  • A. V. BolshakovaEmail author
PHYSICS OF EARTH, ATMOSPHERE, AND HYDROSPHERE
  • 12 Downloads

Abstract

The features of the dynamics of weak tsunami waves caused by the deep-focus Okhotsk Sea earthquake on May 24, 2013, are studied with numerical modeling. It is found that the vast area of coseismic deformations along with the shallow depth of the Sea of Okhotsk and high latitudes were favorable for effects of the Earth’s rotation in the dynamics of the 2013 Okhotsk Sea tsunami. The comparison of calculations with and without the Coriolis force showed that the Earth’s rotation significantly affects the wave field, changing the wave forms and the distribution of the maximum amplitudes.

Keywords:

deep-focus earthquake tsunami shallow water theory Coriolis force Kelvin waves numerical modeling 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-05-00053a.

REFERENCES

  1. 1.
    S. S. Voit, A. N. Lebedev, and B. I. Sebekin, Issled. Tsunami, No. 1, 15 (1986).Google Scholar
  2. 2.
    A. V. Bobrovich, Issled. Tsunami, No. 4, 33 (1990).Google Scholar
  3. 3.
    E. N. Pelinovskii, Hydrodynamics of Tsunami Waves (Inst. Prikl. Fiz. Ross. Akad. Nauk, Nizhny Novgorod, 1996).Google Scholar
  4. 4.
    L. Kh. Ingel’, Dokl. Earth Sci. 362, 1036 (1998).Google Scholar
  5. 5.
    S. F. Dotsenko, Izv., Atmos. Oceanic Phys. 35, 641 (1999).Google Scholar
  6. 6.
    S. F. Dotsenko, Prikl. Gidromekh. 2 (4), 24 (2000).Google Scholar
  7. 7.
    S. F. Dotsenko and Yu. I. Shokin, Vychisl. Tekhnol. 6, 13 (2001).MathSciNetGoogle Scholar
  8. 8.
    M. A. Nosov and G. N. Nurislamova, Moscow Univ. Phys. Bull. 67, 457 (2012). doi 10.3103/S0027134912050086ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Nosov and G. N. Nurislamova, Moscow Univ. Phys. Bull. 68, 490 (2013). doi 10.3103/S002713491306009XADSCrossRefGoogle Scholar
  10. 10.
    M. A. Nosov, G. N. Nurislamova, A. V. Moshenceva, and S. V. Kolesov, Izv., Atmos. Oceanic Phys. 50, 520 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    G. N. Nurislamova and M. A. Nosov, Vestn. KRAUNTs. Nauki Zemle 33 (1), 58 (2017).Google Scholar
  12. 12.
    M. A. Nosov, Izv., Atmos. Oceanic Phys. 50, 474 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Kowalik, W. Knight, T. Logan, and P. Whitmore, Sci. Tsunami Hazards 23, 40 (2005).Google Scholar
  14. 14.
    M. H. Dao and P. Tkalich, Nat. Hazards Earth Syst. Sci. 7, 741 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    F. Løvholt, G. Pedersen, and G. Gisler, J. Geophys. Res.: Oceans 113, C09026 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    J. T. Kirby, F. Shi, B. Tehranirad, et al., Ocean Modell. 62, 39 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    S. Watada, S. Kusumoto, and K. Satake, J. Geophys. Res.: Solid Earth 119, 4287 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    A. E. Gill, Atmosphere–Ocean Dynamics (Academic, 1982).Google Scholar
  19. 19.
    B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, 2016).CrossRefGoogle Scholar
  20. 20.
    V. K. Gusiakov, Sea 15, 23 (2009).Google Scholar
  21. 21.
    A. I. Zaytsev, E. N. Pelinovsky, A. A. Kurkin, I. S. Kostenko, and A. Yalciner, Izv., Atmos. Oceanic Phys. 52, 217 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    E. A. Okal, Geophys. J. Int. 209, 234 (2017).ADSGoogle Scholar
  23. 23.
    Y. Okada, Bull. Seismol. Soc. Am. 75, 1135 (1985).Google Scholar
  24. 24.
    M. Leonard, Bull. Seismol. Soc. Am. 100, 1971 (2010).CrossRefGoogle Scholar
  25. 25.
    M. A. Nosov, S. V. Kolesov, A. V. Bol’shakova, G. N. Nurislamova, K. A. Sementsov, and V. A. Karpov, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 5, 1850901 (2018).Google Scholar
  26. 26.
    Y. Tanioka and K. Satrake, Geophys. Res. Lett. 23, 861 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, Pure Appl. Geophys. 171, 3515 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    I. V. Fain and E. A. Kulikov, Vychisl. Tekhnol. 16, 111 (2011).Google Scholar
  29. 29.
    M. A. Nosov and S. V. Kolesov, Pure Appl. Geophys. 168, 1223 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    M. A. Nosov and K. A. Sementsov, Izv., Atmos. Oceanic Phys. 50, 539 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    J. Kaempf, Advanced Ocean Modelling: Using Open-Source Software (Springer, 2010).CrossRefGoogle Scholar
  32. 32.
    M. A. Nosov, Math. Models Comput. Simul. 10, 431 (2018).MathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Physics, Moscow State UniversityMoscowRussia
  2. 2.Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of SciencesYuzhno-SakhalinskRussia

Personalised recommendations