Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 612–617 | Cite as

Spallation Yield of Neutrons Produced in Tungsten and Bismuth Target Bombarded with 0.1 to 3 GeV Proton Beam

  • Abdessamad DidiEmail author
  • Mohamed Bencheikh
  • Ahmed Dadouch
  • Hassane El Bekkouri
  • Jaouad Tajmouati
  • Abdelmajid Maghnouj
  • Otman Jai
THE PHYSICS OF THE ATOMIC NUCLEUS AND ELEMENTARY PARTICLES
  • 3 Downloads

Abstract

In this paper, we investigated a system, is composed of a natural tungsten and bismuth cylindrical targets. The target has been optimized to produce the maximum of neutrons yield with a diameter of 20 cm and varying height from 10 to 80 cm. The target is bombarded with a high-intensity accelerator by a 0.1 to 3 GeV proton beam. The protons are assumed uniformly distributed across the beam of diameter 2 cm. In this work, we have used Monte Carlo method by using MCNP-6 code to simulate spallation neutron yield, neutron spectrum and distribution of the spallation neutrons coming out of the target in the target region. According to the results approving using several simulations for two targets tungsten and bismuth, the difference of spallation neutron yield increases by 8.92% using a bismuth target and for some beam energy 3 GeV.

Keywords:

spallation reactions ADS MCNP proton beam energy neutron yield accelerator 

REFERENCES

  1. 1.
    A. Didi, A. Dadouch, and H. El Bekkouri, Int. J. Pharm. Pharm. Sci. 8, 327 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Golabian, M. A. Hosseini, M. Ahmadi, B. Soleimani, and M. Rezvanifard, Appl. Radiat. Isot. 131, 62 (2018).CrossRefGoogle Scholar
  3. 3.
    R. C. Martin, J. B. Knauer, and P. A. Balo, Appl. Radiat. Isot. 53, 785 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Reucroft, R. Rusack, D. Ruuska, and J. Swain, Nucl. Instrum. Methods Phys. Res., Sect. A 387, 214 (1997).Google Scholar
  5. 5.
    A. Didi, A. Dadouch, O. Jai, J. Tajmouati, and H. El Bekkouri, Nucl. Eng. Technol. 49, 787 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Didi, A. Dadouch, M. Bencheikh, and O. Jai, Moscow Univ. Phys. Bull. 72, 460 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. Didi, A. Dadouch, and O. Jai, Moscow Univ. Phys. Bull. 72, 465 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    R. B. M. Sogbadji, R. G. Abrefah, B. J. B. Nyarko, E. H. K. Akaho, H. C. Odoi, and S. Attakorah-Birinkorang, Appl. Radiat. Isot. 90, 192 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Yang and W. Zhan, Sci. China: Technol. Sci. 58, 1705 (2015). https://doi.org/10.1007/s11431-015-5894-0CrossRefGoogle Scholar
  10. 10.
    W. Chou, arXiv:physics/0301025 [physics.acc-ph].Google Scholar
  11. 11.
    J.-Y. Li, Y.-L. Zhang, X.-C. Zhang, L.-W. Chen, and L. Yang, Nucl. Eng. Des. 324, 202 (2017).CrossRefGoogle Scholar
  12. 12.
    M. A. Mosby, J. W. Engle, K. R. Jackman, F. M. Nortier, and E. R. Birnbaum, Nucl. Instrum. Methods Phys. Res., Sect. B 381, 29 (2016).Google Scholar
  13. 13.
    Y. Liu, PhD Thesis (North Carolina State Univ., Raleigh, 2006).Google Scholar
  14. 14.
    C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P. Lawrence, R. J. Jensen, J. L. Anderson, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 320, 336 (1992).Google Scholar
  15. 15.
    R. D. Cromarty, G. T. van Rooyen, and J. P. R. de Villiers, J. Nucl. Mater. 445, 30 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    A. Lafuente and M. Piera, Ann. Nucl. Energy 38, 910 (2011).CrossRefGoogle Scholar
  17. 17.
    P. Schuurmans et al., in Proc. Int. Workshop on P&T and ADS Development, Mol, 2003, p. 657.Google Scholar
  18. 18.
    L. Hu, Y. Zhang, G. H. Su, W. Tian, and S. Qiu, Nucl. Eng. Des. 322, 474 (2017).CrossRefGoogle Scholar
  19. 19.
    K. Samec, R. Ž. Milenković, L. Blumenfeld, S. Dementjevs, C. Kharoua, and Y. Kadi, Nucl. Instrum. Methods Phys. Res., Sect. A 638, 1 (2011).Google Scholar
  20. 20.
    L. Buligins, K. Thomsen, O. Lielausis, E. Platacis, and A. Poznaks, Nucl. Instrum. Methods Phys. Res., Sect. A 761, 58 (2014).Google Scholar
  21. 21.
    J.-Y. Li, Y.-L. Zhang, X.-C. Zhang, L.-W. Chen, and L. Yang, Nucl. Eng. Des. 324, 202 (2017).CrossRefGoogle Scholar
  22. 22.
    T. A. Frolova, Nucl. Energy Technol. 3, 60 (2017).CrossRefGoogle Scholar
  23. 23.
    S. R. Hashemi-Nezhad, W. Westmeier, M. Zamani-Valasiadou, et al., Ann. Nucl. Energy 38, 1144 (2011).CrossRefGoogle Scholar
  24. 24.
    E. Haug, Astron. Astrophys. 406, 31 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhang, J. Li, X. Zhang, H. Cai, and L. Yang, Nucl. Instrum. Methods Phys. Res., Sect. B 410, 88 (2017).Google Scholar
  26. 26.
    S. Zhou, H. Wu, and Y. Zheng, Ann. Nucl. Energy 111, 271 (2018).CrossRefGoogle Scholar
  27. 27.
    H. W. Bertini, Phys. Rev. 131, 1801 (1963).ADSCrossRefGoogle Scholar
  28. 28.
    H. W. Bertini, Phys. Rev. 188, 1711 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    M. P. Guthrie et al., Nucl. Instrum. Methods 66, 29 (1968). https://doi.org/10.1016/0029-554X(68)90054-2ADSCrossRefGoogle Scholar
  30. 30.
    Y. Yariv and Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Yariv and Z. Fraenkel, Phys. Rev. C 24, 488 (1981).ADSCrossRefGoogle Scholar
  32. 32.
    A. Boudard, J. Cugnon, S. Leray, and C. Volant, Phys. Rev. C 66, 044615 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    J. Cugnon, Nucl. Phys. A 462, 751 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    J. Cugnon, C. Volant, and S. Vuillier, Nucl. Phys. A 620, 475 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    B. Şarer, S. Şahin, Y. Çelik, and M. Günay, Ann. Nucl. Energy 62, 382 (2013).CrossRefGoogle Scholar
  36. 36.
    J. T. Goorley et al., Report No. LA-CP-14-00745 (Los Alamos National Laboratory, Los Alamos, 2014).Google Scholar
  37. 37.
    Handbook on Photonuclear Data for Applications. Cross-Sections and Spectra (International Atomic Energy Agency, Vienna, 2000).Google Scholar
  38. 38.
    A. Fassò, A. Ferrari, and P. R. Sala, in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Ed. by A. Kling, F. J. C. Baräo, M. Nakagawa, L. Távora, and P. Vaz (Springer, 2001), p. 159.Google Scholar
  39. 39.
    Y. Kadi, in Proc. 5th Workshop on Simulating Accelerator Radiation Environments, Paris, 2000, p. 117Google Scholar
  40. 40.
    M. Chadwick et al., Nucl. Data Sheets 107, 2931 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    W. P. Swanson, Radiological Safety Aspects of the Operation of Electron Linear Accelerators (International Atomic Energy Agency, Vienna, 1979).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Abdessamad Didi
    • 1
    Email author
  • Mohamed Bencheikh
    • 1
  • Ahmed Dadouch
    • 1
  • Hassane El Bekkouri
    • 1
  • Jaouad Tajmouati
    • 1
  • Abdelmajid Maghnouj
    • 1
  • Otman Jai
    • 2
  1. 1.LISTA Laboratory, Department of Physics, Faculty of Sciences Dhar El-Mahraz, University of Sidi Mohamed Ben AbdellahFezMorocco
  2. 2.Department of Physics, Abdelmalek Eassaâdi UniversityTetouanMorocco

Personalised recommendations