Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 592–598 | Cite as

The Spatial Distribution of Magnetization in a Ferromagnetic Semiconductor Thin Film

  • V. M. ChetverikovEmail author
THEORETICAL AND MATHEMATICAL PHYSICS
  • 1 Downloads

Abstract

A model for the description of the distribution of magnetization across the thickness of a ferromagnetic semiconductor film is considered. Applying a constant electric field perpendicular to the film surface makes it possible to change the Curie temperature. The obtained formulas determine the dependence that this distribution has on the values of the physical parameters of the film.

Keywords:

Fermi energy Curie temperature exchange interaction polylogarithm 

Notes

REFERENCES

  1. 1.
    T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Phys. Rev. B 59, 9818 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    T. Jungwirth, J. Konig, J. Sinova, J. Kucera, and A. H. MacDonald, Phys. Rev. B 66, 012402 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    F. Matsukura, Y. Tokura, and H. Ohno, Nat. Nanotechnol. 10, 209 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Kozhushner, B. L. Lidskii, V. S. Posvyanskii, and L. I. Trakhtenberg, J. Exp. Theor. Phys. 123, 1068 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Kozhushner, B. V. Lidskii, I. I. Oleynik, et al., J. Phys. Chem. 119, 16286 (2015).CrossRefGoogle Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976), Part 1.Google Scholar
  9. 9.
    O. N. Koroleva, A. V. Mazhukin, V. I. Mazhukin, and P. V. Breslavskiy, Math. Models Comput. Simul. 9, 383 (2017).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. N. Kalitkin and L. V. Kuz’mina, Zh. Vychisl. Mat. Mat. Fiz. 15, 768 (1975).Google Scholar
  11. 11.
    N. N. Kalitkin and I. V. Ritus, USSR Comput. Math. Math. Phys. 26 (2), 87 (1986).CrossRefGoogle Scholar
  12. 12.
    D. Bednarczyk and J. Bednarczyk, Phys. Lett. A 64, 409 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    P. Van Halen and D. L. Pulfrey, J. Appl. Phys. 57, 5271 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    F. G. Lether, J. Sci. Comput. 16, 69 (2001).MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. M. Garoni, N. E. Frankel, and M. L. Glasser, J. Math. Phys. 42, 1860 (2001).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    V. P. Maslov, Math. Notes 102, 824 (2017).MathSciNetCrossRefGoogle Scholar
  17. 17.
    V. P. Maslov, Russ. J. Math. Phys. 24, 354 (2017).MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. P. Maslov, Math. Notes 94, 722 (2013).MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. P. Maslov, Russ. J. Math. Phys. 24, 494 (2017).MathSciNetCrossRefGoogle Scholar
  20. 20.
    V. P. Maslov, Funct. Anal. Its Appl. 37, 94 (2003).MathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Tikhonov Institute of Electronics and Mathematics, National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations