Moscow University Physics Bulletin

, Volume 73, Issue 6, pp 579–582 | Cite as

Analysis of a Rectangular Waveguide with Allowance for Losses in the Walls

  • A. N. Bogolyubov
  • A. I. Erokhin
  • M. I. SvetkinEmail author


We propose a model of an infinite waveguide of constant rectangular cross section with losses in the walls which are described by the Schukin–Leontovich boundary conditions. The waveguide is analyzed using the non-complete Galerkin method. We use the standard basis for waveguide with ideally conducting walls supplemented with functions providing precise fulfillment of the boundary conditions. The eigen modes of the waveguide in the THz range are calculated and dispersion characteristics are obtained.


waveguide systems Schukin–Leontovich boundary conditions incomplete Galerkin method 



This work was curried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-31-60084 mol_a_dk and no. 16-01-00690).


  1. 1.
    L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988).Google Scholar
  2. 2.
    A. N. Tikhonov and A. A. Samarskii, Zh. Tekh. Fiz. 18, 959 (1948).Google Scholar
  3. 3.
    A. I. Erokhin, I. E. Mogilevskii, V. E. Rodyakin, and V. M. Pikunov, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 6, 1661106 (2016).Google Scholar
  4. 4.
    A. G. Sveshnikov and I. E. Mogilevskii, Select Mathematical Problems of Diffraction Theory (Mosk. Gos. Univ., Moscow, 2012).Google Scholar
  5. 5.
    A. S. Il’inskii et al., Mathematical Models of Electrodynamics (Vysshaya Shkola, Moscow, 1991).Google Scholar
  6. 6.
    V. M. Pikunov and A. G. Sveshnikov, in Low-Temperature Plasma Encyclopedia. Series B (Yanus-K, Moscow, 2008), Vol. 7-1, Part 2, p. 534.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. N. Bogolyubov
    • 1
  • A. I. Erokhin
    • 1
  • M. I. Svetkin
    • 1
    Email author
  1. 1.Department of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations