Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 4, pp 377–381 | Cite as

Bacteriochlorophyll Fluorescence of Green Sulfur Bacteria in Anaerobic Zone of Two Natural Water Bodies

  • A. V. Kharcheva
  • A. A. Zhiltsova
  • O. N. Lunina
  • E. D. Krasnova
  • D. A. Voronov
  • A. S. Savvichev
  • S. V. Patsaeva
Optics and Spectroscopy. Laser Physics
  • 14 Downloads

Abstract

Absorption and fluorescence spectra for living cells of green sulfur bacteria inhabiting the anaerobic zone of two meromictic lakes separated from the White Sea have been studied. The spectral-optical properties of pure cultures of green-colored and brown-colored species of green sulfur bacteria Chlorobium phaeovibrioides have been compared, and the content of bacteriochlorophyll molecules in one bacterial cell of each species has been estimated. The method of separating the contributions of different groups of green sulfuric bacteria to bacteriochlorophyll fluorescence was applied for a mixture of two species of bacteria with different pigmentation. The depth distributions of fluorescence intensity and concentration of bacteriochlorophylls for microorganisms inhabiting the Trekhtzvetnoe and Elovoe lakes at the Kandalaksha Gulf of the White Sea were plotted.

Keywords

fluorescence spectra absorption spectra bacteriochlorophyll green sulfur bacteria Chlorobium phaeovibrioides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Gostev, F. I. Kouzminov, M. Yu. Gorbunov, et al., EARSeL eProc. 11 (2), 98 (2012).Google Scholar
  2. 2.
    M. J. Doubell, J. C. Prairie, and H. Yamazaki, Deep Sea Res., Part II 101, 207 (2014). doi 10.1016/j.dsr2.2012.12.009CrossRefGoogle Scholar
  3. 3.
    O. A. Kalmatskaya, I. P. Levykina, S. V. Patsaeva, V. A. Karavaev, and V. I. Yuzhakov, Moscow Univ. Phys. Bull. 68, 466 (2013).  https://doi.org/10.3103/S0027134913060076 ADSCrossRefGoogle Scholar
  4. 4.
    O. A. Kalmatskaya and B. A. Karavaev, Biophysics 60, 843 (2015).CrossRefGoogle Scholar
  5. 5.
    D. A. Khundzhua, S. V. Patsaeva, V. A. Terekhova, and V. I. Yuzhakov, J. Spectrosc. 2013, 538608 (2013). doi 10.1155/2013/538608CrossRefGoogle Scholar
  6. 6.
    I. V. Mosharova, V. V. Il’inskii, D. N. Matorin, S. A. Mosharov, A. Yu. Akulova, and F. F. Protopopov, Microbiology 84, 811 (2015).CrossRefGoogle Scholar
  7. 7.
    O. N. Lunina, A. S. Savvichev, E. D. Krasnova, N. M. Kokryatskaya, E. F. Veslopolova, B. B. Kuznetsov, and V. M. Gorlenko, Microbiology 85, 570 (2016). doi 10.1134/S0026261716050118CrossRefGoogle Scholar
  8. 8.
    F. A. Oguntoyinbo, Afr. J. Biotechnol. 6, 163 (2007).Google Scholar
  9. 9.
    A. P. Harrison, Annu. Rev. Microbiol. 38, 265 (1984).CrossRefGoogle Scholar
  10. 10.
    Anoxygenic Photosynthetic Bacteria, Ed. by R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Springer, 1995). doi 10.1007/0-306-47954-0Google Scholar
  11. 11.
    Y. Mori, T. Kataoka, T. Okamura, and R. Kondo, Arch. Microbiol. 195, 303 (2013). doi 10.1007/s00203-013-0879-5CrossRefGoogle Scholar
  12. 12.
    T. L. Hamilton, R. J. Bovee, V. Thiel, et al., Geobiology 12, 451 (2014). doi 10.1111/gbi.12092CrossRefGoogle Scholar
  13. 13.
    P. Pjevac, M. Korlevic, J. S. Berg, et al., Appl. Environ. Microbiol. 81, 298 (2014). doi 10.1128/AEM.02435-14CrossRefGoogle Scholar
  14. 14.
    A. V. Kharcheva, E. D. Krasnova, V. M. Gorlenko, et al., Proc. SPIE 9917, 99170Q (2016). doi 10.1117/12.2229855CrossRefGoogle Scholar
  15. 15.
    S. Kurian, R. Roy, D. J. Repeta, et al., Biogeosciences 9, 2485 (2012). doi 10.5194/bg-9-2485-2012ADSCrossRefGoogle Scholar
  16. 16.
    E. D. Krasnova, A. V. Kharcheva, I. A. Milyutina, et al., J. Mar. Biol. Assoc. U. K. 95, 1579 (2015). doi 10.1017/S0025315415000582CrossRefGoogle Scholar
  17. 17.
    H. Hashimoto, C. Uragami, and R. J. Cogdell, Subcell. Biochem. 79, 111 (2016). doi 10.1007/978-3-319-39126-7_4CrossRefGoogle Scholar
  18. 18.
    S. C. M. Otte, J. C. van der Heiden, N. Pfennig, and J. Amesz, Photosynth. Res. 28, 77 (1991). doi 10.1007/BF00033717CrossRefGoogle Scholar
  19. 19.
    A. V. Kharcheva, A. A. Zhiltsova, O. N. Lunina, et al., Proc. SPIE 9917, 99170P (2016). doi 10.1117/12.2229848CrossRefGoogle Scholar
  20. 20.
    J. Overmann, H. Cypionka, and N. Pfennig, Limnol. Oceanogr. 37, 150 (1992). doi 10.4319/lo.1992.37.1.0150ADSCrossRefGoogle Scholar
  21. 21.
    C. M. Borrego and L. J. Garcia-Gil, Photosynth. Res. 41, 157 (1994). doi 10.1007/BF02184156CrossRefGoogle Scholar
  22. 22.
    Y. Tsukatani and S. Masuda, Origins Life Evol. Biospheres 45, 367 (2015). doi 10.1007/s11084-015-9446-1ADSCrossRefGoogle Scholar
  23. 23.
    J. Huh, S. K. Saikin, J. C. Brookes, et al., J. Am. Chem. Soc. 136, 2048 (2014). doi 10.1021/ja412035qCrossRefGoogle Scholar
  24. 24.
    G. S. Orf and R. E. Blankenship, Photosynth. Res. 116, 315 (2013). doi 10.1007/s11120-013-9869-3CrossRefGoogle Scholar
  25. 25.
    T. Mizoguchi, J. Harada, K. Yamamoto, and H. Tamiaki, J. Photochem. Photobiol., A 313, 52 (2015). doi 10.1016/j.jphotochem.2015.06.012CrossRefGoogle Scholar
  26. 26.
    G. S. Orf, M. Tank, K. Vogl, et al., Biochim. Biophys. Acta 1827, 493 (2013). doi 10.1016/j.bbabio. 2013.01.006CrossRefGoogle Scholar
  27. 27.
    J. Harada, T. Mizoguchi, S. Satoh, et al., PLoS ONE 8 (4), e60026 (2013). doi 10.1371/journal.pone.0060026ADSCrossRefGoogle Scholar
  28. 28.
    O. N. Lunina, A. S. Savvichev, B. B. Kuznetsov, N. V. Pimenov, and V. M. Gorlenko, Microbiology 82, 815 (2013). doi 10.1134/S0026261714010081CrossRefGoogle Scholar
  29. 29.
    M. Yu. Gorbunov, Povolzh. Ekol. Zh., No. 3, 280 (2011).Google Scholar
  30. 30.
    K. Krasnova, D. Voronov, N. Frolova, et al., EARSeL eProc. 14 (s1), 8 (2015). doi 10.12760/02-2015-1-02Google Scholar
  31. 31.
    Yu. K. Vasil’chuk, N. L. Frolova, E. D. Krasnova, N. A. Budantseva, A. C. Vasil’chuk, L. V. Dobrydneva, L. E. Efimova, E. V. Terskaya, and Ju. N. Chizhova, Water Resour. 43, 828 (2016). doi 10.1134/S0097807816050110CrossRefGoogle Scholar
  32. 32.
    A. V. Kharcheva, A. V. Meschankin, I. I. Lyalin, et al., Proc. SPIE 9031, 90310T (2014). doi 10.1117/12.2051737CrossRefGoogle Scholar
  33. 33.
    A. P. Lisitzin, Yu. K. Vasil’chuk, V. P. Shevchenko, N. A. Budantseva, E. D. Krasnova, A. N. Pantyulin, A. S. Filippov, and Ju. N. Chizhova, Dokl. Earth Sci. 449, 406 (2013). doi 10.1134/S1028334X1304003XADSCrossRefGoogle Scholar
  34. 34.
    R. E. Blankenship, P. Cheng, P. P. Causgrove, et al., Photochem. Photobiol. 57, 103 (1993). doi 10.1111/j.1751-1097.1993.tb02263.xCrossRefGoogle Scholar
  35. 35.
    J. Wang, D. C. Brune, and R. E. Blankenship, Biochim. Biophys. Acta 1015, 457 (1990). doi 10.1016/0005-2728(90)90079-JCrossRefGoogle Scholar
  36. 36.
    T. Mirkovic, E. E. Ostroumov, J. M. Anna, et al., Chem. Rev. 117, 249 (2017). doi 10.1021/acs.chemrev. 6b00002CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Kharcheva
    • 1
  • A. A. Zhiltsova
    • 1
  • O. N. Lunina
    • 2
  • E. D. Krasnova
    • 3
  • D. A. Voronov
    • 4
    • 5
  • A. S. Savvichev
    • 2
  • S. V. Patsaeva
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Department of BiologyMoscow State UniversityMoscowRussia
  4. 4.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  5. 5.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations