Moscow University Physics Bulletin

, Volume 73, Issue 3, pp 301–305 | Cite as

An Approximation for the Density Matrix in Calculations of the Mean-Field Potential of the Interaction of Nuclei

  • S. A. GoncharovEmail author
  • R. V. Sukhorukov
Physics of Atomic Nuclei and Elementary Particles


An approximation has been proposed for the nucleus single-particle density matrix in calculating the exchange component of the mean-field potential in the double-folding model. The method is based on the pseudo-oscillator representation of the density matrix and makes it possible to separate single-particle and internucleon variables, which greatly simplifies and accelerates the process of calculating the mean-field potential. Test calculations based on examples of alpha-particle interactions with 12C, 16O, and 40Ca nuclei have shown the adequacy of the proposed approximation.


density matrix mean-field potential harmonic oscillator model diffraction optical model light nuclei 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Goncharov, O. M. Knyaz’kov, and A. A. Kolozhvari, Phys. At. Nucl. 59, 634 (1996).Google Scholar
  2. 2.
    G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, 1983).Google Scholar
  3. 3.
    C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Phys. A 449, 354 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    G. R. Satchler and W. G. Love, Phys. Rep. 55, 83 (1979).CrossRefGoogle Scholar
  5. 5.
    A. A. Ogloblin, S. A. Goncharov, Yu. A. Glukhov, A. S. Dem’yanova, M. V. Rozhkov, V. P. Rudakov, and W. H. Trzaska, Phys. At. Nucl. 66, 1478 (2003).CrossRefGoogle Scholar
  6. 6.
    S. A. Goncharov and A. Izadpanah, Phys. At. Nucl. 70, 18 (2007).CrossRefGoogle Scholar
  7. 7.
    S. A. Goncharov and A. Izadpanah, Phys. At. Nucl. 70, 1491 (2007).CrossRefGoogle Scholar
  8. 8.
    T. L. Belyaeva, A. N. Danilov, A. S. Dem’yanova, S. A. Goncharov, A. A. Ogloblin, and R. Perez-Torres, Phys. Rev. C 82, 054618 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    X. Campi and A. Bouyssy, Phys. Lett. B 73, 263 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    R. Baltin, Z. Naturforsch., A: Phys. Sci. 27, 1176 (1972).Google Scholar
  11. 11.
    V. B. Soubbotin and X. Vinas, Nucl. Phys. A 665, 291 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    M. Ismail, F. Salah, and M. M. Osman, Phys. Rev. C 54, 3308 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    M. Ismail, M. M. Osman, and F. Salah, Phys. Rev. C 60, 037603 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    D. T. Khoa, Phys. Rev. C 63, 034007 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    D. T. Khoa and G. R. Satchler, Nucl. Phys. A 668, 3 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    M. W. Kirson, Nucl. Phys. A 781, 350 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    J. H. Sorensen and A. Winther, Nucl. Phys. A 550, 329 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations