Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 216–222 | Cite as

Cyclic Variations in the Solar Radiation Fluxes at the Beginning of the 21st Century

  • E. A. BruevichEmail author
  • V. V. Bruevich
  • G. V. Yakunina
Astronomy, Astrophysics, and Cosmology


The solar activity in the current, that is, the 24th, sunspot cycle is analyzed. Cyclic variations in the sunspot number (SSN) and radiation fluxes in various spectral ranges have been estimated in comparison with the general level of the solar radiation, which is traditionally determined by the radio emission flux F10.7 at a wavelength of 10.7 cm (2.8 GHz). The comparative analysis of the variations in the solar constant and solar indices in the UV range, which are important for modeling the state of the Earth’s atmosphere, in the weak 24th cycle and strong 22nd and 23rd cycles has shown relative differences in the amplitudes of variations from the minimum to the maximum of the cycle. The influence of the hysteresis effect between the activity indices and F10.7 in the 24th cycle, which is taken into account here, makes it possible to refine the forecast of the UV indices and solar constant depending on the quadratic regression coefficients that associate the solar indices with F10.7 depending on the phase of the cycle.


solar activity activity indexes cycles of solar activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. A. Nagovitsyn, A. G. Tlatov, and E. Y. Nagovitsyna, Astron. Rep. 60, 831 (2016). doi 10.1134/S1063772916090055ADSCrossRefGoogle Scholar
  2. 2.
    Y. Kleeorin, N. Saifullin, N. Kleeorin, S. Porshnev, I. Rogachevskii, and D. Sokoloff, Mon. Not. R. Astron. Soc. 460, 3960 (2016). doi 10.1093/mnras/stw1267ADSCrossRefGoogle Scholar
  3. 3.
    E. V. Shimanovskaya, V. V. Bruevich, and E. A. Bruevich, Res. Astron. Astrophys. 16, 148 (2016). doi 10.1088/1674-4527/16/9/148ADSCrossRefGoogle Scholar
  4. 4.
    E. A. Bruevich and G. V. Yakunina, Moscow Univ. Phys. Bull. 70, 282 (2015). doi 10.3103/S0027134915040062ADSCrossRefGoogle Scholar
  5. 5.
    M. Snow, M. Weber, J. Machol, R. Viereck, and R. Richard, J. Space Weather Space Clim. 4, A04 (2014). doi 10.1051/swsc/2014001CrossRefGoogle Scholar
  6. 6.
    K. Bachmann and O. White, Sol. Phys. 150, 347 (1994). doi 10.1007/BF00712896ADSCrossRefGoogle Scholar
  7. 7.
    N. A. Krivova and S. K. Solanki, J. Astrophys. Astron. 29, 151 (2008). doi 10.1007/s12036-008-0018-xADSCrossRefGoogle Scholar
  8. 8.
    K. L. Yeo, N. A. Krivova, S. K. Solanki, and K. H. Glassmeier, Astron. Astrophys. 570, A85 (2014). doi 10.1051/0004-6361/201423628ADSCrossRefGoogle Scholar
  9. 9.
    G. Kopp, N. Krivova, J. Lean, and C. J. Wu, Sol. Phys. 291, 2951 (2016). doi 10.1007/s11207-016-0853-xADSCrossRefGoogle Scholar
  10. 10.
    E. A. Bruevich and G. V. Yakunina, Astrophysics 59, 369 (2016). doi 10.1007/s10511-016-9442-9ADSCrossRefGoogle Scholar
  11. 11.
    E. A. Bruevich, T. V. Kazachevskaya, V. V. Katyushina, A. A. Nusinov, and G. V. Yakunina, Geomagn. Aeron. (Engl. Transl.) 56, 1075 (2016). doi 10.1134/S001679321608003XADSCrossRefGoogle Scholar
  12. 12.

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. A. Bruevich
    • 1
    Email author
  • V. V. Bruevich
    • 1
  • G. V. Yakunina
    • 1
  1. 1.Sternberg State Institute of AstronomyMoscow State UniversityMoscowRussia

Personalised recommendations