Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 595–600 | Cite as

Infrared Thermography and Image Analysis of Dynamic Processes around the Facial Area

  • I. A. Znamenskaya
  • E. Yu. Koroteyeva
  • A. V. Khakhalin
  • V. V. Shishakov
  • S. A. Isaichev
  • A. M. Chernorizov
Biophysics and Medical Physics
  • 4 Downloads

Abstract

This paper describes the principles of visualization and analysis of thermal fields generated by different physiological processes around the facial area and in the environment. The dynamics of these fields was studied and their possible application for quantitative evaluation of psychophysical parameters is analyzed using infrared thermography with high spatial and temporal resolution. A software module has been developed and tested for combining infrared and visible camera images. A technique was proposed for complex recording and analysis of central and peripheral nervous activities using a thermal camera that captures three types of temperature fields that vary with time around the facial area: exhaled gas flows, cutaneous blood circulation, and sweat gland activity.

Keywords

infrared thermography physiological parameters image processing pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Ivanitskii, Phys.-Usp. 49, 1263 (2006). doi 10.1070/PU2006v049n12ABEH006163ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Scripal’, A. A. Sagaidachnyi, and D. A. Usanov, IR Biomedical Diagnostics: Manual (Saratov, 2009).Google Scholar
  3. 3.
    D. Cardone, P. Pinti, and A. Merla, Comput. Math. Methods Med. 2015, 984353 (2015). doi 10.1155/2015/984353CrossRefGoogle Scholar
  4. 4.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Ed. by P. J. Linstrom and W. G. Mallard (National Inst. of Standards and Technology). doi 10.18434/T4D303Google Scholar
  5. 5.
    https://opencv.org.Google Scholar
  6. 6.
    http://dlib.net.Google Scholar
  7. 7.
    P. Viola and M. J. Jones, Int. J. Comput. Vision 57, 137 (2004).CrossRefGoogle Scholar
  8. 8.
    J. W. Tang, A. D. Nicolle, C. A. Klettner, et al., PLoS ONE April 8, e59970 (2013). doi doi 10.1371/journal. pone.0059970ADSCrossRefGoogle Scholar
  9. 9.
    J. K. Gupta, C. H. Lin, and Q. Chen, Indoor Air 20, 31 (2010).CrossRefGoogle Scholar
  10. 10.
    K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, Ganong’s Review of Medical Physiology, 24th ed. (McGraw-Hill, 2012).Google Scholar
  11. 11.
    I. A. Znamenskaya, E. Yu. Koroteeva, A. V. Khakhalin, and V. V. Shishakov, Sci. Visualization 8, 122 (2016).Google Scholar
  12. 12.
    B. G. Vainer, Phys. Med. Biol. 50, R63 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • I. A. Znamenskaya
    • 1
  • E. Yu. Koroteyeva
    • 1
  • A. V. Khakhalin
    • 1
  • V. V. Shishakov
    • 1
  • S. A. Isaichev
    • 2
  • A. M. Chernorizov
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Department of PsychologyMoscow State UniversityMoscowRussia

Personalised recommendations