Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 601–608 | Cite as

Modeling of the Risk of Single Event Upsets from Cosmic Particles for Memory with Error Correction

Astronomy, Astrophysics, and Cosmology

Abstract

In this study a risk of single event upsets from cosmic particles for computer memory with error correction onboard spacecraft is modeled. A brief description of existing mechanisms of the detection and correction of errors in memory is given. Formulas for calculating the probability of occurring of >1, 2 and so on errors in at least one memory block are presented. Values of the probability of uncorrectable errors for the concrete conditions of spacecraft flight are computed for certain microchips.

Keywords

single event upsets memory microchips error correction ions protons solar flare Earth’s radiation belts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Harboe-Sorensen, in Proc. European Space Components Conf., Toulouse, France, 2002, p. 239.Google Scholar
  2. 2.
    R. Harboe-Sorensen, F.-X. Guerre, J.-G. Loquet, and C. Tizon, IEEE Trans. Nucl. Sci. 50, 2322 (2003). doi 10.1109/TNS.2003.821402ADSCrossRefGoogle Scholar
  3. 3.
    E. Petersen, IEEE Trans. Nucl. Sci. 43, 2805 (1996). doi 10.1109/23.556870ADSCrossRefGoogle Scholar
  4. 4.
    N. V. Kuznetsov, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar., Nos. 1–2, 9 (2001).Google Scholar
  5. 5.
    J. H. Adams, Jr., A. A. Beliaev, N. V. Kuznetsov, R. A. Nymmik, and E. C. Smith, Radiat. Meas. 26, 509 (1996). doi 10.1016/1350-4487(96)00050-9CrossRefGoogle Scholar
  6. 6.
    V. F. Bashkirov, N. V. Kuznetsov, and R. A. Nymmik, Radiat. Meas. 30, 427 (1999). doi 10.1016/S1350-4487(99)00069-4CrossRefGoogle Scholar
  7. 7.
    N. V. Kuznetsov, Yu. M. Malyshkin, N. I. Nikolaeva, R. A. Nymmik, M. I. Panasyuk, V. M. Uzhegov, and M. V. Yakovlev, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Vozdeistv. Radioelektron. Appar., No. 2, 72 (2011).Google Scholar
  8. 8.
    R. W. Hamming, Bell Syst. Tech. J. 29, 147 (1950). doi 10.1002/j.1538-7305.1950.tb00463.xMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Hocquenghem, Chiffres 2, 147 (1959).MathSciNetGoogle Scholar
  10. 10.
    R. C. Bose and D. K. Ray-Chaudhuri, Inf. Control 3, 68 (1960). doi 10.1016/S0019-9958(60)90287-4CrossRefGoogle Scholar
  11. 11.
    I. S. Reed and G. Solomon, J. Soc. Ind. Appl. Math. 8, 300 (1960). doi 10.1137/0108018CrossRefGoogle Scholar
  12. 12.
    R. Berger, D. Artz, and P. Kapcio, RAD750 Radiation Hardened PowerPC Microprocessor (Lockheed Martin, 2000).Google Scholar
  13. 13.
    C. L. Chen and M. Y. Hsiao, IBM J. Res. Dev. 2, 124 (1984). doi 10.1147/rd.282.0124CrossRefGoogle Scholar
  14. 14.
    Selected Papers of Richard von Mises, Ed. by P. Frank, S. Goldstein, M. Kac, W. Prager, G. Szego, and G. Birkhoff (American Mathematical Society, Providence, 1964), Vol. 2, p. 313.Google Scholar
  15. 15.
    R. A. Nymmik, Radiat. Meas. 30, 287 (1999). doi 10.1016/S1350-4487(99)00065-7CrossRefGoogle Scholar
  16. 16.
    D. M. Sawyer and J. I. Vette, Report No. NSSDC/WDC-A-R&S 76-06 (National Space Science Data Center, 1976).Google Scholar
  17. 17.
    R. Koga, S. H. Crain, P. Yu, and K. B. Crawford, in Proc. IEEE Radiation Effects Data Workshop, Vancouver, Canada, 2001, p. 182. doi 10.1109/REDW.2001.960479Google Scholar
  18. 18.
    P. Layton, G. Williamson, and L. Logden, Report No. 1003857 (Maxwell Technologies, San Diego, 2003).Google Scholar
  19. 19.
    D. Clark, presented at RAD750 Flight Computer Industry Wide Workshop, Pasadena, United States, 2005.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations