Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 5, pp 470–473 | Cite as

Investigation of the charge distribution in small cluster ions Ar 13 + and Ar 19 +

  • J. G. KorobovaEmail author
  • A. E. Ieshkin
  • V. S. Chernysh
Condensed Matter Physics
  • 18 Downloads

Abstract

The results of ab initio studies of the atomic and charge structure of small clusters and cluster ions formed by 13 and 19 argon atoms are reported. It was found that the icosahedral atomic structure is energetically the most favorable for such clusters. The calculations demonstrate that when a single electron is removed from a cluster, the excess positive charge is distributed primarily over the surface of the formed cluster ion.

Keywords

argon clusters cluster ions charge distribution ab initio studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Lindblad, H. Bergersen, T. Rander, et al., Phys. Chem. Chem. Phys. 8, 1899 (2006).CrossRefGoogle Scholar
  2. 2.
    B. M. Smirnov, Phys.-Usp. 50, 354 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    S. Prasalovich, K. Hansen, M. Kjellberg, et al., J. Chem. Phys. 123, 084317 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    V. N. Popok, Rev. Adv. Mater. Sci. 38, 7 (2014).Google Scholar
  5. 5.
    A. E. Ieshkin, A. A. Shemukhin, Yu. A. Ermakov, and V. S. Chernysh, Moscow Univ. Phys. Bull. 71, 87 (2016). doi 10.3103/S0027134916010082ADSCrossRefGoogle Scholar
  6. 6.
    I. A. Harris, K. A. Norman, R. V. Mulkern, and J. A. Northby, Chem. Phys. Lett. 130, 316 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    T. Ikeshoji, B. Hafskjold, Y. Hashi, and Y. Kawazoe, J. Chem. Phys. 105, 5126 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    A. L. Mackay, Acta Crystallogr. 15, 916 (1962).CrossRefGoogle Scholar
  9. 9.
    B. W. Van de Waal, G. Torchet, and M.-F. de Feraudy, Chem. Phys. Lett. 331, 57 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Young, Phase Diagrams of the Elements (Univ. of California Press, Berkeley, 1991).Google Scholar
  11. 11.
    H. Haberland, Surf. Sci. 156, 305 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    N. E. Levinger, D. Ray, M. L. Alexander, and W. C. Lineberger, J. Chem. Phys. 89, 5654 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    H. Haberland, B. von Issendorff, T. Kolar, et al., Phys. Rev. Lett. 67, 3290 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    N. L. Doltsinis, P. J. Knowles, and F. Y. Naumkin, Mol. Phys. 96, 749 (1999).ADSGoogle Scholar
  15. 15.
    J. A. Gascon and R. W. Hall, J. Phys. Chem. 105, 6579 (2001).CrossRefGoogle Scholar
  16. 16.
    E. Buonomo, M. P. de Lara-Castells, and F. A. Gianturco, Z. Phys. D 41, 211 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    R. L. Johnston, Atomic and Molecular Clusters (Taylor & Francis, London, 2002).CrossRefGoogle Scholar
  18. 18.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, Boca Raton, 2013), p. 283.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • J. G. Korobova
    • 1
    Email author
  • A. E. Ieshkin
    • 1
  • V. S. Chernysh
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations