Skip to main content
Log in

Single-electron transistor with an island formed by several dopant phosphorus atoms

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

We present the results of an experimental study of electron transport through individual phosphorus dopants implanted into a silicon crystal. We developed an original technique for single-electron transistor fabrication from silicon-on-insulator material with an island formed by single phosphorus atoms. The proposed method is based on well-known CMOS compatible technological processes that are standard in semiconductor electronics and may be used in most research groups. The large Coulomb blockade energy value of the investigated single-electron transistor (∼20 meV) allows one to observe single-electron effects in a wide temperature range up to 77 K. We measured and analyzed stability diagrams of fabricated experimental structures. We demonstrated a single-electron transistor with controllable electron transport through two to three phosphorus dopants only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz.

  2. D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuler, P. A. Lee, and W. Richard Webb (North Holland, Amsterdam, 1971), p.173.

  3. Y. S. Gerasimov, V. V. Shorokhov, and O. V. Snigirev, J. Supercond. Novel Magn. 28, 781 (2015). doi 10.1007/s10948-014-2661-6

    Article  Google Scholar 

  4. J. A. Miwa, J. A. Mol, J. Salfi, et al., Appl. Phys. Lett. 103, 043106 (2013). doi 10.1063/1.4816439

    Article  ADS  Google Scholar 

  5. P. M. Koenraad and M. E. Flatte, Nat. Mater. 10, 91 (2011). doi 10.1038/nmat2940

    Article  ADS  Google Scholar 

  6. G. C. Tettamanzi, R. Wacquez, and S. Rogge, New J. Phys. 16, 63036 (2014). doi 10.1088/1367-2630/16/6/063036

    Article  Google Scholar 

  7. M. Ligowski, D. Moraru, M. Anwar, et al., Appl. Phys. Lett. 93, 142101 (2008). doi 10.1063/1.2992202

    Article  ADS  Google Scholar 

  8. J. Park, A. N. Pasupathy, J. I. Goldsmith, et al., Nature 417, 722 (2002). doi 10.1038/nature00791

    Article  ADS  Google Scholar 

  9. J. A. Mol, J. Verduijn, R. D. Levine, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 13969 (2011). doi 10.1073/pnas.1109935108

    Article  ADS  Google Scholar 

  10. M. Veldhorst, C. Yang, J. Hwang, et al., Nature 526, 410 (2015). doi 10.1038/nature15263

    Article  ADS  Google Scholar 

  11. J. J. Pla, K. Y. Tan, J. P. Dehollain, et al., Nature 489, 541 (2012). doi 10.1038/nature12011

    Article  ADS  Google Scholar 

  12. B. E. Kane, Nature 393, 133 (1998). doi 10.1038/30156

    Article  ADS  Google Scholar 

  13. A. Laucht, R. Kalra, S. Simmons, et al., Nat. Nanotechnol. 12, 61 (2017). doi. 10.1038/nnano.2016.178

    Article  ADS  Google Scholar 

  14. K. Maehashi, T. Katsura, K. Kerman, et al., Anal. Chem. 79, 782 (2007). doi 10.1021/ac060830g

    Article  Google Scholar 

  15. R. Yan, J. H. Park, Y. Choi, et al., Nat. Nanotechnol. 7, 191 (2012). doi 10.1038/nnano.2011.226

    Article  ADS  Google Scholar 

  16. G. Presnova, D. Presnov, V. Krupenin, et al., Biosens. Bioelectron. 88, 283 (2017). doi. 10.1016/j.bios.2016. 08.054

    Article  Google Scholar 

  17. D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, et al., Beilstein J. Nanotechnol. 4, 330 (2013). doi 10.3762/bjnano.4.38

    Article  Google Scholar 

  18. V. A. Krupenin, D. E. Presnov, A. B. Zorin, and J. Niemeyer, Phys. B 284–288, 1800 (2000). doi 10.1016/S0921-4526(99)02990-7

    Article  Google Scholar 

  19. M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012). doi 10.1038/nnano.2012.21

    Article  ADS  Google Scholar 

  20. K. Y. Tan, K. W. Chan, M. Mottonen, et al., Nano Lett. 10, 11 (2009). doi 10.1021/nl901635j

    Article  ADS  Google Scholar 

  21. E. Prati, M. Belli, S. Cocco, et al., Appl. Phys. Lett. 98, 053109 (2011). doi 10.1063/1.3551735

    Article  ADS  Google Scholar 

  22. Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 76, 2256 (2000). doi 10.1063/1.126313

    Article  ADS  Google Scholar 

  23. A. B. Zorin, F. J. Ahlers, J. Niemeyer, et al., Phys. Rev. B 53, 13682 (1996). doi 10.1103/PhysRevB.53.13682

    Article  ADS  Google Scholar 

  24. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, D. E. Presnov, S. A. Yakovenko, G. B. Khomutov, C. P. Gubin, and V. V. Kolesov, JETP Lett. 64, 556 (1996). doi 10.1134/1.567234

    Article  ADS  Google Scholar 

  25. V. O. Zalunin, V. A. Krupenin, S. A. Vasenko, and A. B. Zorin, JETP Lett. 91, 402 (2010). doi 10.1134/S0021364010080084

    Article  ADS  Google Scholar 

  26. V. A. Krupenin, A. B. Zorin, M. N. Savvateev, et al., J. Appl. Phys. 90, 2411 (2001). doi 10.1063/1.1389758

    Article  ADS  Google Scholar 

  27. M. Usman, J. Bocquel, J. Salfi, et al., Nat. Nanotechnol. 11, 763 (2016). doi 10.1038/nnano.2016.83

    Article  ADS  Google Scholar 

  28. M. Gasseller, M. DeNinno, R. Loo, et al., Nano Lett. 11, 5208 (2011). doi 10.1021/nl2025163

    Article  ADS  Google Scholar 

  29. H. Sellier, G. P. Lansbergen, J. Caro, et al., Phys. Rev. Lett. 97, 206805 (2006). doi 10.1103/PhysRev-Lett.97.206805

    Article  ADS  Google Scholar 

  30. G. P. Lansbergen, R. Rahman, C. J. Wellard, et al., Nat. Phys. 4, 656 (2008). doi 10.1038/nphys994

    Article  Google Scholar 

  31. D. Moraru, A. Samanta, T. Mizuno, et al., Sci. Rep. 4, 6219 (2014). doi 10.1038/srep06219

    Article  Google Scholar 

  32. M. Pierre, R. Wacquez, X. Jehl, et al., Nat. Nanotechnol. 5, 133 (2010). doi 10.1038/nnano.2009.373

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dagesyan.

Additional information

Original Russian Text © S.A. Dagesyan, V.V. Shorokhov, D.E. Presnov, E.S. Soldatov, A.S. Trifonov, V.A. Krupenin, O.V. Snigirev, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 5, pp. 32–38.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagesyan, S.A., Shorokhov, V.V., Presnov, D.E. et al. Single-electron transistor with an island formed by several dopant phosphorus atoms. Moscow Univ. Phys. 72, 474–479 (2017). https://doi.org/10.3103/S0027134917050058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917050058

Keywords

Navigation