Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 5, pp 474–479 | Cite as

Single-electron transistor with an island formed by several dopant phosphorus atoms

  • S. A. Dagesyan
  • V. V. Shorokhov
  • D. E. Presnov
  • E. S. Soldatov
  • A. S. Trifonov
  • V. A. Krupenin
  • O. V. Snigirev
Condensed Matter Physics
  • 45 Downloads

Abstract

We present the results of an experimental study of electron transport through individual phosphorus dopants implanted into a silicon crystal. We developed an original technique for single-electron transistor fabrication from silicon-on-insulator material with an island formed by single phosphorus atoms. The proposed method is based on well-known CMOS compatible technological processes that are standard in semiconductor electronics and may be used in most research groups. The large Coulomb blockade energy value of the investigated single-electron transistor (∼20 meV) allows one to observe single-electron effects in a wide temperature range up to 77 K. We measured and analyzed stability diagrams of fabricated experimental structures. We demonstrated a single-electron transistor with controllable electron transport through two to three phosphorus dopants only.

Keywords

single-electron transistor single-atom transistor silicon-on-insulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz.Google Scholar
  2. 2.
    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, Ed. by B. L. Altshuler, P. A. Lee, and W. Richard Webb (North Holland, Amsterdam, 1971), p.173.Google Scholar
  3. 3.
    Y. S. Gerasimov, V. V. Shorokhov, and O. V. Snigirev, J. Supercond. Novel Magn. 28, 781 (2015). doi 10.1007/s10948-014-2661-6CrossRefGoogle Scholar
  4. 4.
    J. A. Miwa, J. A. Mol, J. Salfi, et al., Appl. Phys. Lett. 103, 043106 (2013). doi 10.1063/1.4816439ADSCrossRefGoogle Scholar
  5. 5.
    P. M. Koenraad and M. E. Flatte, Nat. Mater. 10, 91 (2011). doi 10.1038/nmat2940ADSCrossRefGoogle Scholar
  6. 6.
    G. C. Tettamanzi, R. Wacquez, and S. Rogge, New J. Phys. 16, 63036 (2014). doi 10.1088/1367-2630/16/6/063036CrossRefGoogle Scholar
  7. 7.
    M. Ligowski, D. Moraru, M. Anwar, et al., Appl. Phys. Lett. 93, 142101 (2008). doi 10.1063/1.2992202ADSCrossRefGoogle Scholar
  8. 8.
    J. Park, A. N. Pasupathy, J. I. Goldsmith, et al., Nature 417, 722 (2002). doi 10.1038/nature00791ADSCrossRefGoogle Scholar
  9. 9.
    J. A. Mol, J. Verduijn, R. D. Levine, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 13969 (2011). doi 10.1073/pnas.1109935108ADSCrossRefGoogle Scholar
  10. 10.
    M. Veldhorst, C. Yang, J. Hwang, et al., Nature 526, 410 (2015). doi 10.1038/nature15263ADSCrossRefGoogle Scholar
  11. 11.
    J. J. Pla, K. Y. Tan, J. P. Dehollain, et al., Nature 489, 541 (2012). doi 10.1038/nature12011ADSCrossRefGoogle Scholar
  12. 12.
    B. E. Kane, Nature 393, 133 (1998). doi 10.1038/30156ADSCrossRefGoogle Scholar
  13. 13.
    A. Laucht, R. Kalra, S. Simmons, et al., Nat. Nanotechnol. 12, 61 (2017). doi. 10.1038/nnano.2016.178ADSCrossRefGoogle Scholar
  14. 14.
    K. Maehashi, T. Katsura, K. Kerman, et al., Anal. Chem. 79, 782 (2007). doi 10.1021/ac060830gCrossRefGoogle Scholar
  15. 15.
    R. Yan, J. H. Park, Y. Choi, et al., Nat. Nanotechnol. 7, 191 (2012). doi 10.1038/nnano.2011.226ADSCrossRefGoogle Scholar
  16. 16.
    G. Presnova, D. Presnov, V. Krupenin, et al., Biosens. Bioelectron. 88, 283 (2017). doi. 10.1016/j.bios.2016. 08.054CrossRefGoogle Scholar
  17. 17.
    D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, et al., Beilstein J. Nanotechnol. 4, 330 (2013). doi 10.3762/bjnano.4.38CrossRefGoogle Scholar
  18. 18.
    V. A. Krupenin, D. E. Presnov, A. B. Zorin, and J. Niemeyer, Phys. B 284–288, 1800 (2000). doi 10.1016/S0921-4526(99)02990-7CrossRefGoogle Scholar
  19. 19.
    M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012). doi 10.1038/nnano.2012.21ADSCrossRefGoogle Scholar
  20. 20.
    K. Y. Tan, K. W. Chan, M. Mottonen, et al., Nano Lett. 10, 11 (2009). doi 10.1021/nl901635jADSCrossRefGoogle Scholar
  21. 21.
    E. Prati, M. Belli, S. Cocco, et al., Appl. Phys. Lett. 98, 053109 (2011). doi 10.1063/1.3551735ADSCrossRefGoogle Scholar
  22. 22.
    Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett. 76, 2256 (2000). doi 10.1063/1.126313ADSCrossRefGoogle Scholar
  23. 23.
    A. B. Zorin, F. J. Ahlers, J. Niemeyer, et al., Phys. Rev. B 53, 13682 (1996). doi 10.1103/PhysRevB.53.13682ADSCrossRefGoogle Scholar
  24. 24.
    E. S. Soldatov, V. V. Khanin, A. S. Trifonov, D. E. Presnov, S. A. Yakovenko, G. B. Khomutov, C. P. Gubin, and V. V. Kolesov, JETP Lett. 64, 556 (1996). doi 10.1134/1.567234ADSCrossRefGoogle Scholar
  25. 25.
    V. O. Zalunin, V. A. Krupenin, S. A. Vasenko, and A. B. Zorin, JETP Lett. 91, 402 (2010). doi 10.1134/S0021364010080084ADSCrossRefGoogle Scholar
  26. 26.
    V. A. Krupenin, A. B. Zorin, M. N. Savvateev, et al., J. Appl. Phys. 90, 2411 (2001). doi 10.1063/1.1389758ADSCrossRefGoogle Scholar
  27. 27.
    M. Usman, J. Bocquel, J. Salfi, et al., Nat. Nanotechnol. 11, 763 (2016). doi 10.1038/nnano.2016.83ADSCrossRefGoogle Scholar
  28. 28.
    M. Gasseller, M. DeNinno, R. Loo, et al., Nano Lett. 11, 5208 (2011). doi 10.1021/nl2025163ADSCrossRefGoogle Scholar
  29. 29.
    H. Sellier, G. P. Lansbergen, J. Caro, et al., Phys. Rev. Lett. 97, 206805 (2006). doi 10.1103/PhysRev-Lett.97.206805ADSCrossRefGoogle Scholar
  30. 30.
    G. P. Lansbergen, R. Rahman, C. J. Wellard, et al., Nat. Phys. 4, 656 (2008). doi 10.1038/nphys994CrossRefGoogle Scholar
  31. 31.
    D. Moraru, A. Samanta, T. Mizuno, et al., Sci. Rep. 4, 6219 (2014). doi 10.1038/srep06219CrossRefGoogle Scholar
  32. 32.
    M. Pierre, R. Wacquez, X. Jehl, et al., Nat. Nanotechnol. 5, 133 (2010). doi 10.1038/nnano.2009.373ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. A. Dagesyan
    • 1
  • V. V. Shorokhov
    • 1
  • D. E. Presnov
    • 1
    • 2
  • E. S. Soldatov
    • 1
  • A. S. Trifonov
    • 1
    • 2
  • V. A. Krupenin
    • 1
  • O. V. Snigirev
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations