Moscow University Physics Bulletin

, Volume 71, Issue 4, pp 395–399 | Cite as

The stability of the fractal properties of quasiperiodic multilayered structures

  • M. G. Davydova
  • P. V. Korolenko
  • Yu. V. Ryzhikova
Optics and Spectroscopy. Laser Physics

Abstract

The stability of fractal characteristics has been analyzed in the optical spectra of quasi-periodic multilayered systems with the deterministic changes therein. The transformation of the summation principle of their construction, the transition to the approximant model, and the preparation of metamaterial-based layers have been shown to exert a strong influence on the scaling of the parameters in multilayered systems.

Keywords

quasi-periodic multilayered structures fractal patterns scaling approximants metamaterials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Margolin, L. Yu. Amon, D. A. Babichev, V. S. Fantikov, et al., Izv. Akad. Inzh. Nauk im._A.M. Prokhorova, No. 1, 7 (2015).Google Scholar
  2. 2.
    P. V. Korolenko, E. V. Pozdeeva, and O. V. Saenko, Vestn. Mosk. Univ., Fiz. Astron., No. 5, 17 (2004).Google Scholar
  3. 3.
    A. N. Bogolyubov, A. A. Petukhov, and N. E. Shapkina, Moscow Univ. Phys. Bull. 66, 122 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    P. V. Korolenko, A. Y. Mishin, and Yu. V. Ryzhikova, Optik 124, 3946 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    P. V. Korolenko, A. Yu. Mishin, and Yu. V. Ryzhikova, J. Opt. Technol., 79, 754 (2012).CrossRefGoogle Scholar
  6. 6.
    A. S. Pirozhkov and E. N. Ragozin, Phys.-Usp. 58, 1203 (2015).CrossRefGoogle Scholar
  7. 7.
    E. L. Albuquerque and M. G. Cottam, Phys. Rep. 376, 225 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    P. V. Korolenko, P. A. Logachev, and Yu. V. Ryzhikova, Phys. Wave Phenom. 23, 46 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    P. V. Korolenko, A. Yu. Mishin, S. B. Ryzhikov, and Yu. V. Ryzhikova, Elektromagn. Volny Elektron. Sist. 20 (3), 17 (2015).Google Scholar
  10. 10.
    V. G. Veselago, Phys.-Usp. 46, 764 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Bogolyubov, Yu. V. Mukhartova, and Ts. Gao, Math. Models Comput. Simul. 5, 416 (2013).MathSciNetCrossRefGoogle Scholar
  12. 12.
    G. V. Belokopytov, A. V. Zhuravlev, and Yu. E. Terekhov, Moscow Univ. Phys. Bull. 67, 255 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Muchnik, Y. L. Pritykin, and A. L. Semenov, Russ. Math. Surv. 64, 805 (2009).MathSciNetCrossRefGoogle Scholar
  14. 14.
    W. D. Furlan, V. Ferrando, and Ju. A. Monsoriu, Proc. SPIE 9450, 945014 (2015).CrossRefGoogle Scholar
  15. 15.
    J. A. Monsoriu, R. A. Depine, M. L. Martínez-Ricci, E. Silvestre, and P. Andres, Opt. Lett. 34, 3172 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Maksimovic and Z. Jaksic, Acta Phys. Pol. A 112, 1049 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    V. S. C. M. Rao and S. D. Gupta, J. Opt. A: Pure Appl. Opt., 6, 756 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2001).Google Scholar
  20. 20.
    P. V. Korolenko, S. B. Ryzhikov, and Yu. V. Ryzhikova, Phys. Wave Phenom. 21, 256 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    M. G. Davydova, P. V. Korolenko, S. B. Ryzhikov, and Yu. V. Ryzhikova, Phys. Wave Phenom. 24, 17 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • M. G. Davydova
    • 1
  • P. V. Korolenko
    • 1
    • 2
  • Yu. V. Ryzhikova
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations