Moscow University Physics Bulletin

, Volume 71, Issue 3, pp 309–316 | Cite as

A multipole analysis of the apparent motion of reference radio sources

  • M. V. Sazhin
  • O. S. Sazhina
  • V. N. Sementsov
  • M. N. Siversky
  • V. E. Zharov
  • K. V. Kuimov
Astronomy, Astrophysics, and Cosmology
  • 15 Downloads

Abstract

In this paper, the apparent motions of quasars, which are the reference sources of the international celestial reference system (ICRS), are analyzed. Kinematic parameters from four catalogs compiled by different research groups are used. Apparent motions are expanded on a special set of vector functions on the sphere that are an irreducible representation of the rotation group O(3). The degree of the noninertiality of the barycentric reference system caused by the rotation of the solar system around the galactic center is estimated according to expansion coefficients. The direction and magnitude of the acceleration vector are calculated and compared with the alternative estimates. This method is discussed as a way to test Newton’s law on a large scale.

Keywords

celestial reference system galaxy rotation relativistic aberration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ma and E. F. Arias, Astron. J. 116, 516 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    V. E. Zharov, Spherical Astronomy (Fryazino, 2002).Google Scholar
  3. 3.
    J. Kovalevsky, Modern Astrometry (Springer, 2002).CrossRefGoogle Scholar
  4. 4.
    D. G. Blair and M. V. Sazhin, Astron. Astrophys. Trans. 3, 191 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    C. R. Gwinn, T. N. Eubanks, and T. Pyne, Astron. J. 485, 87 (1997).CrossRefGoogle Scholar
  6. 6.
    M. V. Sazhin, O. S. Sazhina, and M. S. Pshirkov, Astron. Rep. 55, 954 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. F. Zakharov, Astron. Rep. 59, 823 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    O. Titov, S. B. Lambert, and A.-M. Gontier, Astron. Astrophys. 529, A91 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    M. V. Sazhin, M. N. Siversky, T. A. Kalinina, and N. V. Shmeleva, Moscow Univ. Phys. Bull. 68, 159 (2013). doi 10.3103/S0027134913020112ADSCrossRefGoogle Scholar
  10. 10.
    O. Titov, in Proc. Journées 2007 “Systèmes de Référence Spatio-Temporels,” Paris, France, 2007, p. 16.Google Scholar
  11. 11.
    N. A. Voronkov and V. E. Zharov, Moscow Univ. Phys. Bull. 68, 235 (2013). doi 10.3103/S0027134913030132ADSCrossRefGoogle Scholar
  12. 12.
    O. Titov, in Proc. 5th IVS General Meeting, St. Petersburg, Russia, 2008, p. 265.Google Scholar
  13. 13.
    S. M. Kopeikin and V. V. Makarov, Astron. J. 131, 1471 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Ya. Shapiro, I. M. Gel’fand, and R. A. Minlos, Representations of the Rotation and Lorentz Groups and Their Applications (Moscow, 1958; Pergamon Press, New York, 1963).MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • M. V. Sazhin
    • 2
  • O. S. Sazhina
    • 2
  • V. N. Sementsov
    • 2
  • M. N. Siversky
    • 1
  • V. E. Zharov
    • 1
  • K. V. Kuimov
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.State Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations