Advertisement

Moscow University Physics Bulletin

, Volume 70, Issue 1, pp 45–50 | Cite as

Interactions of helical structures as a molecular basis of intra- and intercellular interactions

  • S. V. Stovbun
  • A. A. Skoblin
  • J. A. Litvin
  • M. G. Mikhaleva
  • V. A. Tverdislov
Biophysics and Medical Physics

Abstract

Two types of formation of super spirals by spiral counter- and co-intertwining of spiral molecular strings were identified using chiral biomimetics. An earlier statement on the formation of hierarchies of super-spiral structures with an alternating chirality sign in molecular homochiral systems was experimentally proven. By developing the Euler model, estimates of forces and velocities in systems of interacting spiral structures that quantitatively correspond to the characteristic times and dimensions of intracellular and inter-cellular interactions were theoretically obtained. It was shown that the phase of structure formation in the cell is not limiting and the time of formation of intracellular structures is determined by the time that is necessary for the cell to choose a functional program.

Keywords

chirality spirals biomimetics strings molecular machines biological cell interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts, A. Johnson, J. M. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Oxfam Books, Shrewsbury, United Kingdom, 2002).Google Scholar
  2. 2.
    R. B. Dickinson and D. L. Purich, “Nematode sperm motility: Nonpolar filament polymerization mediated by end-tracking motors,” Biophys. J. 92(2), 622–631 (2007).CrossRefGoogle Scholar
  3. 3.
    I. Connell, W. Agace, P. Klemm,M. Schembri, S. Marild, and C. Svanborg, “Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. II,” Proc. Nat. Acad. Sci. USA 93(18), 9827–9832 (1996).CrossRefADSGoogle Scholar
  4. 4.
    J. S. Mattick, “Type IV pili and twitching motility,” Ann. Rev. Microbiol. 56(1), 289–314 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Izraelashvili, Intermolecular and Surface Forces (Moscow, 2011) [in Russian].Google Scholar
  6. 6.
    A. R. Borges, M. Hyacinth, M. Lum, C. M. Dingle, P. L. Hamilton, M. Chruszcz, L. Pu, M. Sabat and K. L. Caran, “Self-assembled thermoreversible gels of nonpolar liquids by racemic propargylic alcohols with fluorinated and nonfluorinated aromatic rings,” Langmuir 24, 7421–7431 (2008).CrossRefGoogle Scholar
  7. 7.
    X. Qiu, W. Meng, and F. Qing, “Synthesis of fluorinated amino acids,” Tetrahedron 60(32), 6711–6745 (2004).CrossRefGoogle Scholar
  8. 8.
    G. K. S. Prakash, M. Mandal, S. Schweizer, N. A. Petasis, and G. A. Olah, “A facile stereocontrolled synthesis of anti-alpha-(trifluoromethyl)-beta-amino alcohols,” Organic Lett. 2(20), 3173–3176 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Xu, C. Kang, Y. Chen, Yang Xu, Chuanqing Kang, Yu Chen, Zheng Bian, Xuepeng Qiu, Lianxun Gao and Qingxin Meng, “In situ gel-to-crystal transition and synthesis of metal nanoparticles obtained by fluorination of a cyclic β-aminoalcohol gelator,” Chem.-Eur. J. 18(52), 16955–16961 (2012).CrossRefGoogle Scholar
  10. 10.
    S. V. Stovbun, “Formation of wirelike structures in dilute solution of chiral compounds,” Russ. J. Phys. Chem. B 5, 546–553 (2011).CrossRefGoogle Scholar
  11. 11.
    S. V. Stovbun and A. A. Skoblin, “Molecular and supramolecular structures in biological fluids and their homochiral models,” Mos. Univ. Phys. Bull. 67(3), 274–277 (2012), DOI:10.3103/S0027134912030150). http://vmu.phys.msu.ru/abstract/2012/3/12-3-35 CrossRefADSGoogle Scholar
  12. 12.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, “Phenomenological description of the spontaneous formation of macroscopic strings in low-concentration chiral solutions and the formation of anisometric gels,” Dokl. Phys. Chem. 442, 36–39 (2012).CrossRefGoogle Scholar
  13. 13.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, R. G. Kostyanovskii, M. V. Grishin, and B. R. Shub, “Macroscopic chirality of strings,” Russ. J. Phys. Chem. B 5, 1019–1022 (2011).CrossRefGoogle Scholar
  14. 14.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, M. V. Grishin, B. R. Shub, Yu. M. Ageev, G. G. Shishkin, and V. A. Tverdislov, “Superspiralization of Chiral Strings,” Bull. Exper. Biol. Med. 154, 34–36 (2012).CrossRefGoogle Scholar
  15. 15.
    S. V. Stovbun and A. A. Skoblin, “Physicochemical simulation of cell-cell commutation,” Bull. Exper. Biol. Med. 152, 571–574 (2012).CrossRefGoogle Scholar
  16. 16.
    S. V. Stovbun, A. I. Mikhailov, A. A. Skoblin, E. E. Bragina, and M. A. Gomberg, “On the supramolecular mechanism of cell-cell commutation,” Russ. J. Phys. Chem. B 6, 60–64 (2012).CrossRefGoogle Scholar
  17. 17.
    V. A. Tverdislov, “Chirality as a primary switch of hierarchical levels in molecular biological systems,” Biophysics 58, 128–132 (2013).CrossRefGoogle Scholar
  18. 18.
  19. 19.
    J. R. McIntosh, V. Volkov, F. I. Ataullakhanov, and E. L. Grishchuk, “Tubulin depolymerization may be an ancient biological motor,” J. Cell Sci. 15(123), 3425–3434 (2010).CrossRefGoogle Scholar
  20. 20.
    S. V. Stovbun, Doctoral Dissertation in Mathematics and Physics, (Inst. Khim. Fiz. Ross. Akad. Nauk, Moscow, 2013).Google Scholar
  21. 21.
    D. M. Zlenko and S. V. Stovbun, “Model of a homochiral supramolecular string,” Russ. J. Phys. Chem. B 8, 613–619 (2014). http://link.springer.com/journal/volumesAndIssues/11826 CrossRefGoogle Scholar
  22. 22.
    S. V. Stovbun and A. A. Skoblin, “Optical effect estimation in chiral solutions,” Khim. Fiz. 31(7), 7–11 (2012).Google Scholar
  23. 23.
    S. V. Stovbun and A. A. Skoblin, “Chirotropical phenomena in biological fluids and their homochiral models,” Mos. Univ. Phys. Bull. 67(3), 278–281 (2012). DOI:10.3103/S0027134912030162). http://vmu.phys.msu.ru/abstract/2012/3/12-3-39 CrossRefADSGoogle Scholar
  24. 24.
    I. I. Artobolevskii, Theory of Mechanisms and Machines. A Tutorial for Higher Techn. Educat. Inst. (Moscow, 1988) [in Russian], 4th ed.Google Scholar
  25. 25.
    S. V. Stovbun, A. A. Skoblin, and A. M. Zanin, “Structural dynamics of chiral strings,” Russ. J. Phys. Chem. B 8, 293–301 (2014). http://link.springer.com/journal/volumesAndIssues/11826 CrossRefGoogle Scholar
  26. 26.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics. Vol. 6: Fluid Mechanics (London: Pergamon, 1959; Moscow, 1988).Google Scholar
  27. 27.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, D. P. Shashkin, A. A. Berlin, and V. A. Tverdislov, “Commensurability effects in chiral strings,” Dokl. Phys. Chem. 450, 138–141 (2013).CrossRefGoogle Scholar
  28. 28.
    Physical Values, Ed. by I. S. Grigor’ev and E. Z. Meilikhov, (Moscow, 1991) [in Russian].Google Scholar
  29. 29.
    L. A. Blumenfeld and A. N. Tikhonov, Biophysical Thermodynamics of Intracellular Processes. Molecular Machines of the Living Cell (Springer-Verlag, New York, 1994).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • S. V. Stovbun
    • 1
  • A. A. Skoblin
    • 1
  • J. A. Litvin
    • 1
  • M. G. Mikhaleva
    • 1
  • V. A. Tverdislov
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations