Moscow University Physics Bulletin

, Volume 69, Issue 6, pp 552–557 | Cite as

Raman spectroscopy of albumin interaction with nanodiamond films

  • N. N. Brandt
  • R. R. Ismagilov
  • A. V. Priezzhev
  • A. S. Svetlakova
  • A. Yu. Chikishev
Biophysics and Medical Physics


This study is focused on finding the possible structural changes of molecules of one of the principal proteins of blood plasma (albumin) that occur upon their interaction with nanodiamonds. The interaction between nanodiamond films and protein films that form after solutions dry up is analyzed. A possibility of spontaneous protein crystallization after the solution dries up on the surface of a nanodiamond film is demonstrated. It is found by means Raman spectroscopy that the secondary structure, the structure of disulfide bridges, and the structure of the tyrosine doublet of the protein do not change (with respect to the corresponding structures in the lyophilized state) upon the interaction of the protein with a nanodiamond film, at least in the bulk of a protein film with a thickness of 1 μm. However, conformational changes may occur in a fairly thin (about 20 nm) near-surface layer of the protein film.


Raman spectroscopy plasma proteins albumin nanoparticles nanodiamonds conformation of proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.-C. Fu, H.-Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, Proc. Nat. Acad. Sci. 104, no. 3, 727 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nature Nanotechnol. 7, 11 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    A. Krueger, Chem.-Eur. J. 14, no. 5, 1382 (2008).CrossRefGoogle Scholar
  4. 4.
    D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer-Verlag, 2009).Google Scholar
  5. 5.
    Y.-C. Lin, L.-W. Tsai, E. V. Perevedentseva, H.-H. Chang, C.-H. Lin, D.-S. Sun, A. E. Lugovtsov, A. Priezzhev, J. Mona, and C.-L. Cheng, J. Biomed. Optics 17, no. 10, 101512 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    E. V. Perevedentseva, F.-I. Su, T.-H. Su, Y. C. Lin, C. L. Cheng, A. V. Karmenyan, A. V. Priezzhev, and A. E. Lugovtsov, Quantum Electr. 40, no. 12, 1089 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    J. Mona, C.-J. E. Kuo, E. V. Perevedentseva, A. V. Priezzhev, and C. L. Cheng, Diamond Relat. Mater. 39, 73 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    N. N. Pshenkina, Biomed. Zh. Farmakologiya 12, 1067 (2011).Google Scholar
  9. 9.
    P. R. Carey, Biochemical Applications of Raman and Resonance Raman Spectroscopes (New York, 1982).Google Scholar
  10. 10.
    N. N. Brandt and A. Y. Chikishev, Laser Phys. 14, no. 11, 1386 (2004).Google Scholar
  11. 11.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, A. P. Volkov, and Y. P. Svirko, Carbon 41, no. 4, 836 (2003).CrossRefGoogle Scholar
  12. 12.
    A. A. Zolotukhin, M. A. Dolganov, and A. N. Obraztsov, Diamond Relat. Mater. 37, 64 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. C. Ferrari and J. Robertson, Philos. Trans. Royal Soc. A 362, 2477 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    A. McPherson, Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory, 1999).Google Scholar
  15. 15.
    S. Fermani, G. Falini, M. Minnucci, and A. Ripamonti, J. Crystal Growth 224, nos. 3–4, 327 (2011).ADSGoogle Scholar
  16. 16.
    N. N. Brandt, A. Yu. Chikishev, A. I. Sotnikov, Yu. A. Savochkina, I. I. Agapov, A. G. Tonevitskii, and M. P. Kirpichnikov, Dokl. Biochem. Biophys. 376, nos. 1–6, 26 (2001).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • N. N. Brandt
    • 1
  • R. R. Ismagilov
    • 1
  • A. V. Priezzhev
    • 1
    • 2
  • A. S. Svetlakova
    • 1
  • A. Yu. Chikishev
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.International Laser CenterMoscow State UniversityMoscowRussia

Personalised recommendations