Moscow University Physics Bulletin

, Volume 65, Issue 2, pp 91–98 | Cite as

Holomorphic extension of the logistic sequence

  • D. Yu. KouznetsovEmail author


The logistic problem is formulated in terms of the Superfunction and Abelfunction of the quadratic transfer function H(z) = uz(1 − z). The Superfunction F as holomorphic solution of equation H(F(z)) = F(z + 1) generalizes the logistic sequence to the complex values of the argument z. The efficient algorithm for the evaluation of function F and its inverse function, id est, the Abelfunction G are suggested; F(G(z)) = z. The halfiteration h(z) = F(1/2 + G(z)) is constructed; in wide range of values z, the relation h(h(z)) = H(z) holds. For the special case u = 4, the Superfunction F and the Abelfunction G are expressed in terms of elementary functions.

Key words

Logistic operator Logistic sequence Holomorphic extension Superfunction Abelfunction Pomeau-Manneville scenario 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. B. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach To Nonlinear Dynamics and Chaos (Addison-Wesley, New York, 1992).zbMATHGoogle Scholar
  2. 2.
    S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1994).Google Scholar
  3. 3.
    J. C. Sprott, Chaos and Time-Series Analysis (Oxford Univ., Oxford, 2003).zbMATHGoogle Scholar
  4. 4.
    K. Bjerklöv, Commun. Math. Phys. 286, 237 (2009), Scholar
  5. 5.
    V. O. Papanyan and Yu. I. Grigoryan, Kvant. Elektron. 21, 309 (1994) [Quant. Electron. 21, 287 (1994)].Google Scholar
  6. 6.
    H. Kneser, J. Reine Angewandte Mathem. 187, 56 (1950).MathSciNetGoogle Scholar
  7. 7.
  8. 8.
    D. Kouznetsov and H. Trappmann, Mathem. Conput. (2010, in press),
  9. 9.
    N. H. Abel, Crelle’s J., No. 2, 389 (1827).Google Scholar
  10. 10.
    D. Kuznetsov and G. Trappmann, Vestn. Mosk. Un-Ta. Fiz. Astron (2010, in press),
  11. 11.
    D. Kuznetsov, Vladikavk. Matem. Zh. (2010, in press),
  12. 12.
    D. Kouznetsov and H. Trappmann, Preprint ILS UEC (2009),
  13. 13.
    R. A. Knoebel, Am. Mathem. Mon. 88, 235 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J.-P. Chavas and M. T. Holt, Am. J. Agricult. Econ. 73, 819 (1991).CrossRefGoogle Scholar
  15. 15.
    K. S. Yajnik, Coexistence of Regularity an Irregularity in a Nonlinear Dynamical System,
  16. 16.
    J. M. Gac and J. J. Zebrowski, Acta Phys. Polon. B 39, 1019 (2008), 39/pdf/v39p1019.pdf.ADSGoogle Scholar
  17. 17.
    Y. Pomeau and P. Manneville, Comm. Math. Phys. 74, 189 (1980).CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    R. Myrzakulov, M. Zh. Kozybakov, and K. O. Sabdenov, Izv. Tomsk. Politekhn. Univ. 309, 109 (2006). Scholar
  19. 19.
    P. V. Elyutin, “I think that...,” private commun. (2009).Google Scholar
  20. 20.
    I. M. Saraeva, Yu. M. Romanovskii, and A. V. Borisov, Vladimir Dmitrievich Krivchenkov, Ser. Great Scientists of Physical Department of Moscow State University (Mosc. State Univ., Moscow, 2008), on-line ver., p. 81 [in Russian], Scholar
  21. 21.
    H. Trappmann, Tetration forum (2009),

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.Institute for Laser ScienceUniversity of Electro-CommunicationsTokyoJapan

Personalised recommendations