Moscow University Physics Bulletin

, Volume 65, Issue 1, pp 6–12 | Cite as

Superfunctions and sqrt of factorial

Article

Abstract

The holomorphic function h is constructed such that h h z = z!; this function is interpreted as square root of Factorial.

Key words

sqrt of Factorial superfunction SuperFactorial inverse problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Saraeva, Yu. M. Romanovskii, and A. V. Borisov, Vladimir Dmitrievich Krivchenkov, Ser. Great Scientists of Physic Department of Mosc. State Univ. (Fiz. Fakult. Mosc. Gos. Univ., Moscow, 2008), p. 81 [in Russian]; http://www.phys.msu.ru/rus/about/structure/admin/OTDEL-IZDAT/HISTORY/.Google Scholar
  2. 2.
    V. M. Gordienko and V. K. Novik, On Time and Faculty, on Cathedra and on me. 70-years from Prof. V. P. Kandidov Birthday (Moscow, 2007) [in Russian]; http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf.
  3. 3.
    M. Abramovits and I. Stegun, Handbook on Special Functions (National Bureau of Standards, NY, 1964) [in English].Google Scholar
  4. 4.
    D. Kouznetsov and H. Trappmann, “Mathematics of Computation,” Preprint ILS UEC (2009, in press); http://www.ils.uec.ac.jp/~dima/PAPERS/2009sqrt2.pdf.
  5. 5.
  6. 6.
    H. Trappmann, Elementary Superfunctions (Tetration Forum, Berlin, 2009); http://math.eretrandre.org/tet-rationforum/showthread.php?tid=275.Google Scholar
  7. 7.
    H. Kneser, J. Reine Angew. Mathem. 187, 56 (1950).MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Trappmann and D. Kouznetsov, “Uniqueness of Holomorphic Abel Functions,” Preprint ILS UEC (2009); http://www.ils.uec.ac.jp/~dima/PAPERS/2009uniabel.pdf.
  9. 9.
    D. Kouznetsov, Math. Comput. 78, 1647 (2009).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    G. Belitskii and Yu. Lubish, Studia Mathem. 134, 135 (1999).MATHGoogle Scholar
  11. 11.
    N. H. Abel, Crelle’s J., No. 2, 389 (1827).Google Scholar
  12. 12.
  13. 13.
    Sun Sui Cheng and Li Wenrong, Analytic Solutions of Functional Equations (World Sci., 2008).Google Scholar
  14. 14.
    E. Schröder, “Uber Iterierte Funktionen III,” Math. Ann. 3, 296 (1870).CrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations (Cambridge, 1990).Google Scholar
  16. 16.
    J. Ecalle, Theory of Holomorphic Invariants, Publ. Mathem. No. 67-74 09 (Paris Univ. U.E.R. Mathem., Orsay, 1970); http://portail.mathdoc.fr/PMO/PDF/E_ECALLE_67_74_09.pdf.Google Scholar
  17. 17.
    J. Milnor, Dynamics in One Complex Variable (Princeton, 2006).Google Scholar
  18. 18.
  19. 19.
    D. Kouznetsov, “Ackermann Functions of Complex Argument,” Preprint ILS UEC (2008); http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf.
  20. 20.
    D. Kouznetsov, Vladikavk. Matem. Zh. (2010, in press); http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf.
  21. 21.
  22. 22.
    D. Kouznetsov and H. Trappmann, Preprint ILS UEC (2009); http://www.ils.uec.ac.jp/~dima/PAPERS/2009fractae.pdf.
  23. 23.
  24. 24.
    A. Robbins, “Solving for the Analytic Piecewice Extension of Tetration and the Super-Logarithm,” Preprint of Virtual Composer (2000); http://misc.virtualcomposer2000.com/TetrationSuperlog_Robbins.pdf.

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.Institute for Laser ScienceChofushi, TokyoJapan
  2. 2.BerlinGermany

Personalised recommendations