Advertisement

Moscow University Physics Bulletin

, Volume 62, Issue 4, pp 216–220 | Cite as

Numerical simulation of the laminar-turbulent transition in the flow over a backward-facing step

  • T. G. ElizarovaEmail author
  • P. N. Nikol’skii
Article
  • 67 Downloads

Abstract

The capabilities of the quasi-gasdynamic equations as applied to the simulation of laminar-turbulent transitions are demonstrated by computing the viscous compressible gas flow in a channel with an abrupt expansion.

Keywords

Direct Numerical Simulation Separation Zone Turbulent Transition Viscous Stress Tensor Abrupt Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence: From Order to Chaos (Nauka, Moscow, 2001) [in Russian].Google Scholar
  2. 2.
    Yu. V. Sheretov, Mathematical Modeling of Fluid Flows Based on Quasi-Hydrodynamic and Quasi-Gasdynamic Equations (Tversk. Gos. Univ., Tver, 2000) [in Russian].Google Scholar
  3. 3.
    T. G. Elizarova, M. E. Sokolova, and Yu. V. Sheretov, Zh. Vychisl. Mat. Mat. Fiz. 45, 545 (2005) [Comput. Math. Math. Phys. 45, 524 (2005)].zbMATHMathSciNetGoogle Scholar
  4. 4.
    T. G. Elizarova, Quasi-Gasdynamic Equations and Methods for Computing Viscous Flows (Nauchnyi Mir, Moscow, 2007) [in Russian].Google Scholar
  5. 5.
    T. G. Elizarova and M. E. Sokolova, Vestn. Mosk. Univ., Fiz. Astron., No. 3, 6 (2005).Google Scholar
  6. 6.
    B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung, J. Fluid Mech. 127, 473 (1983).CrossRefADSGoogle Scholar
  7. 7.
    H. Le, P. Moin, and J. Kim, J. Fluid Mech. 330, 349 (1997).zbMATHCrossRefADSGoogle Scholar
  8. 8.
    D. Wee, Yi. Tongxun, A. Annaswamy, and A. Ghoniem, Phys. Fluids 16, 3361 (2004).CrossRefADSGoogle Scholar
  9. 9.
    T. G. Elizarova, I. S. Kalachinskaya, Yu. V. Sheretov, and E. V. Shil’nikov, in Applied Issues and Computer Science, Ed. by D. P. Kostomarov and V. I. Dmitriev, (Maks Press, Moscow, 2003), No. 14, p. 85 [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  1. 1.Institute for Mathematical ModelingRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mathematics, Faculty of PhysicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations