Moscow University Mathematics Bulletin

, Volume 70, Issue 3, pp 111–114 | Cite as

New case of complete integrability of dynamics equations on a tangent fibering to a 3D sphere

Article
  • 17 Downloads

Abstract

The paper presents the results of study of the motion equations for a dynamically symmetric 4D-rigid body placed in a certain non-conservative field of forces. The form of the field is taken from the dynamics of actual 2D- and 3D-rigid bodies interacting with the medium in the case when the system contains a non-conservative pair of forces forcing the center of mass of a body to move rectilinearly and uniformly. A new case of integrability is obtained for dynamic equations of body motion in a resisting medium filling a four-dimensional space under presence of a tracking force.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Shamolin, Methods of Analysis of Dynamic Systems with Variable Dissipation in Rigid Dynamics (Ekzamen, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    M. V. Shamolin, “Jacobi Integrability in the Problem of Motion of a Four-Dimensional Rigid Body in a Resistant Medium,” Doklady Russ. Akad. Nauk 375 (3), 343 (2000).Google Scholar
  3. 3.
    M. V. Shamolin, “Integrability in Transcendental Functions,” Uspekhi Matem. Nauk 53 (3), 209 (1998).MathSciNetCrossRefGoogle Scholar
  4. 4.
    O. I. Bogoyavlenskii, “Some Integrable Cases of Euler Equations,” Doklady Akad. Nauk SSSR 287 (5), 1105 (1986).MathSciNetGoogle Scholar
  5. 5.
    O. I. Bogoyavlenskii, “Dynamics of a Rigid Body with n Ellipsoidal Cavities Filled with Magnetic Fluid,” Doklady Akad. Nauk SSSR 272 (6), 1364 (1983).MathSciNetGoogle Scholar
  6. 6.
    A. P. Veselov, “Landau-Lifshits Equation and Integrable Systems of Classic Mechanics,” Doklady Akad. Nauk SSSR 270 (5), 1094 (1983).MathSciNetMATHGoogle Scholar
  7. 7.
    A. P. Veselov, “Conditions of Integrability of Euler Equations on so(4),” Doklady Akad. Nauk SSSR 270 (6), 1298 (1983).MathSciNetGoogle Scholar
  8. 8.
    S. V. Manakov, “Remark on Integration of Euler Equations for Dynamics of an n-Dimensional Rigid Body,” Funkts. Anal. Prilozhen. 10 (4), 93 (1976).MathSciNetMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Research Institute of MechanicsMoscow State UniversityLeninskie Gory, MoscowRussia

Personalised recommendations