Advertisement

Moscow University Mathematics Bulletin

, Volume 68, Issue 1, pp 14–17 | Cite as

Bounded strict solar property of strict suns in the space C(Q)

  • A. P. Alimov
Article

Abstract

The intersection of an arbitrary strict sun M in C(Q) with a closed span Π ⊂ C(Q) (in particular, with a closed ball) is shown to be a strict protosun, provided that the natural condition M ∩ int Π ≠ Ø is satisfied. This property is shown to characterize closed spans in C(Q).

Keywords

Natural Condition Closed Ball Solar Property Closed Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Vlasov, “Approximative Properties of Sets in Normed Linear Spaces,” Uspekhi Matem. Nauk 28(6), 3 (1973) [Russ. Math. Surv. 28 (6), 1 (1973)].MathSciNetzbMATHGoogle Scholar
  2. 2.
    B. Brosowski and R. Wegmann, “Charakterisierung bester Approximationen in normierten Vektorraumen,” J. Ap-prox. Theory, 3(4), 369 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    W. Yang, Ch. Li, and G. A. Watson, “Characterization and Uniqueness of Nonlinear Uniform Approximation,” Proc. Edinburgh Math. Soc. 40, 473 (1997).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. A. Koshcheev, “Connectedness and Solar Properties of Sets in Normed Linear Spaces,” Matem. Zametki 19(2), 267 (1976) [Math. Notes 19 (2), 158 (1976)].Google Scholar
  5. 5.
    A. P. Alimov, “Connectedness of Suns in the Space c 0,” Izvestiya Rus. Akad. Nauk, Ser. Matem. 69(4), 3 (2005) [Izvestiya: Math. 69 (4), 651 (2005)].MathSciNetGoogle Scholar
  6. 6.
    A. P. Alimov, “Preservation of Approximative Properties of Subsets of Chebyshev Sets and Suns in ℓ(n),” Izvestiya Rus. Akad. Nauk, Ser. Matem. 70(5), 3 (2006) [Izvestiya: Math. 70 (5), 857 (2006)].MathSciNetGoogle Scholar
  7. 7.
    A. P. Alimov, “Monotone Path-Connectedness of Chebyshev Sets in the Space C(Q),” Matem. Sborn. 197(9), 3 (2006) [Sbornik: Math. 197 (9), 1259 (2006)].MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. P. Alimov, “Preservation of Approximative Properties of Subsets of Chebyshev Sets in a Plane,” Vestnik Mosk. Univ., Matem. Mekhan., No. 4, 46 (2008) [Moscow Univ. Math. Bulletin 63 (5), 198 (2008)].Google Scholar
  9. 9.
    A. A. Vasil’eva, “Closed Spans in Vector-Valued Function Spaces and their Approximative Properties,” Izvestiya Rus. Akad. Nauk, Ser. Matem. 68(4), 75 (2004) [Izvestiya: Math. 68 (4), 709 (2004)].MathSciNetGoogle Scholar
  10. 10.
    A. P. Alimov, “Geometrical Characterization of Strict Suns in ℓ(n),” Matem. Zametki 70(1), 3 (2001) [Math. Notes 70 (1), 3 (2001)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. R. Alimov, “Characterizations of Chebyshev sets in c 0,” J. Approx. Theory 129, 217 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    A. R. Alimov and V. Yu. Protasov, “Separability of Convex Sets by Extreme Hyperplanes,” Fundam. Prikl. Matem. 17(4), 3 (2012).MathSciNetGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • A. P. Alimov
    • 1
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityLeninskie Gory, MoscowRussia

Personalised recommendations