Moscow University Mathematics Bulletin

, Volume 65, Issue 6, pp 247–251 | Cite as

A new method in the scattering theory

  • E. R. Akchurin
  • R. A. Minlos
Article
  • 27 Downloads

Abstract

A new method allowing one to establish the existence of wave operators is demonstrated on the example of the well-known Friedrichs’ model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. O. Friedrichs, “Über die Spectralzerlegung eines Integraloperators,” Math. Ann. 115(2), 249 (1938).CrossRefMathSciNetGoogle Scholar
  2. 2.
    L. D. Faddeev, “On a Model of Friedrichs in the Theory of Perturbations of the Continuous Spectrum,” Trudy Steklov Matem. Inst. 73, 292 (1964).MATHMathSciNetGoogle Scholar
  3. 3.
    D. R. Yafaev, Mathematical Scattering Theory. General Theory, AMS, Providence, Rhode Island, 1992; Izd-vo SPbGU, St. Petersburg, 1994).MATHGoogle Scholar
  4. 4.
    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2, (IFML, Moscow, 1959; Acad. Press, 1964).Google Scholar
  5. 5.
    D. D. Botvich and V. A. Malyshev, “Unitary Equivalence of Temperature Dynamics for Ideal and Locally Perturbed Fermi Gas,” Communs Math. Phys. 91, 301 (1983).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    V. A. Malyshev, “Convergence in the Linked Cluster Theorem for Many Body Fermion Systems,” Communs Math. Phys. 119, 501 (1988).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, (Acad. Press, 1972–1978; Mir, Moscow, 1982).Google Scholar
  8. 8.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 3, (Acad. Press, 1972–1978; Mir, Moscow, 1982).Google Scholar
  9. 9.
    M. V. Fedoryuk, Asymptotics. Integrals and Series, (Nauka, Moscow, 1987) [in Russian].MATHGoogle Scholar
  10. 10.
    N. Angelescu, R. A. Minlos, and V. A. Zagrebnov, “Lower Spectral Branches of a Particle Coupled to a Bose Field,” Rev. Math. Phys. 17(10), 1111 (2005).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 1, (IFML, Moscow, 1959; Acad. Press, 1964).Google Scholar
  12. 12.
    J. W. Milnor, Morse Theory, (Princeton Univ. Press, Princeton, 1963; Mir, Moscow, 1965).MATHGoogle Scholar
  13. 13.
    C. Boldrighini, R. A. Minlos, F. R. Nardi, and A. Pellegrinotti, “Asymptotic Decay of Correlations for a Random Walk in Interaction with Markov Field,” Moscow Math. J. 5(3), 507 (2005).MATHMathSciNetGoogle Scholar
  14. 14.
    C. Boldrighini, R. A. Minlos, F. R. Nardi, and A. Pellegrinotti, “Asymptotic Decay of Correlations for a Random Walk on the Lattice ℤd in Interaction with Markov Field,” Moscow Math. J. 8(3), 419 (2008).MATHMathSciNetGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • E. R. Akchurin
    • 1
    • 2
  • R. A. Minlos
    • 1
    • 2
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityLeninskie Gory, MoscowRussia
  2. 2.Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia

Personalised recommendations