Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Influence of Polymer Concentration and Formation Technique on Gas Transport and Gas Sorption Properties of Copolyetherimide-Based Composite Membranes Containing MIL-101 Filler

  • 11 Accesses


Composite mixed-matrix membranes for gas separation containing copolyetherimide Siltem® as the polymer matrix and metal-organic framework MIL-101 (10 wt %) as the active filler, were obtained using dry and wet-dry formation techniques. It has been found that the polymer concentration in the initial solution does not significantly affect the CO2 and CH4 permeability of the film membranes obtained by dry molding. The addition of MIL-101 increases the CO2/CH4 selectivity of the dry-formed membranes approximately by 2 times compared to the selectivity of the filler-free polymer membranes. The materials synthesized by the wet-dry formation possess increased permeability and inverted CO2/CH4 selectivity, which indicates a change in the gas transport mechanism. With the increase of polymer concentration, the selectivity of the membranes obtained by the wet-dry technique, increases significantly due to the formation of the dense selective layer.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Adatoz, E., Avci, A.K., and Keskin, S., Sep. Purif. Technol., 2015, vol. 152, p. 207. https://doi.org/10.1016/j.seppur.2015.08.020

  2. 2

    Robeson, L.M., J. Membr. Sci., 1991, vol. 62, p. 165. https://doi.org/10.1016/0376-7388(91)80060-J

  3. 3

    Robeson, L.M., J. Membr. Sci., 2008, vol. 320, p. 390. https://doi.org/10.1016/j.memsci.2008.04.030

  4. 4

    Aroon, M.A., Ismail, A.F., Matsuura, T., and Montazer-Rahmati, M.M., Sep. Purif. Technol., 2010, vol. 75, p. 229. https://doi.org/10.1016/j.seppur.2010.08.023

  5. 5

    Jeazet, H.B.T., Staudt, C., and Janiak, C., Dalton Trans., 2012, vol. 41, p. 14003. https://doi.org/10.1039/c2dt31550e

  6. 6

    Galizia, M., Chi, W.S., and Smith, Z.P., Macromolecules, 2017, vol. 50, p. 7809. https://doi.org/10.1021/acs.macromol.7b01718

  7. 7

    Mulder, M., Basic Principles of Membrane Technology, Dodrecht: Kluwer, 1995.

  8. 8

    Tiron, L.G., Pintilie, S., Lazar, A.L., et al., Mater. Plast. (Bucharest, Rom.), 2018, vol. 55, p. 95.

  9. 9

    Sani, N.A.A., Lau, W.J., and Ismail, A.F., J. Polym. Eng., 2014, vol. 34, p. 489. https://doi.org/10.1515/polyeng-2014-0038

  10. 10

    Sabic products. https://www.sabic-ip.com/gep/en/ ProductsAndServices/SpecialtyAdditivesandIntermediatesProductPages/siltempeisiloxaneresins.html.

  11. 11

    Schmeling, N., Konietzny, R., Sieffert, D., et al., Beilstein J. Org. Chem., 2010, vol. 6, p. 789. https://doi.org/10.3762/bjoc.6.86

  12. 12

    Eiras, D., Labreche, Y., and Pessana, L.A., Mater. Res., 2016, vol. 401, p. 76. https://doi.org/10.1590/1980-5373-MR-2015-0621

  13. 13

    Furukawa, H., Cordova, K.E., O’Keeffe, M., and Yaghi, O.M., Science, 2013, vol. 341, p. 974. https://doi.org/10.1126/science.1230444

  14. 14

    Férey, G., Mellot-Draznieks, C., Serre, C., et al., Science, 2005, vol. 309, p. 2040. https://doi.org/10.1126/science.1116275

  15. 15

    Llewellyn, P.L., Bourrelly, S., Serre, C., et al., Langmuir, 2008, vol. 24, p. 7245. https://doi.org/10.1021/la800227x

  16. 16

    Berdonosova, E.A., Kovalenko, K.A., Polyakova, E.V., et al., J. Phys. Chem., 2015, vol. 119, p. 13098. https://doi.org/10.1021/acs.jpcc.5b02861

  17. 17

    Konik, P.A., Strugova, D.V., Zadorozhnyy, M.Yu., et al., Int. J. Hydrogen Energy, 2018, vol. 43, p. 12146. https://doi.org/10.1016/j.ijhydene.2018.04.183

  18. 18

    National Institute of Standards and Technology. http://webbook.nist.gov/chemistry/fluid/.

  19. 19

    Semchikov, Yu.D., Vysokomolekulyarnye soedineniya (High-Molecular-Weight Compounds), Moscow: Akademiya, 2005.

  20. 20

    Yampolskii, Yu.P., Alentiev, A.Yu., Bondarenko, G.N., et al., Ind. Eng. Chem. Res., 2010, vol. 49, p. 12031. https://doi.org/10.1021/ie100097a

  21. 21

    Konik, P.A., Berdonosova, E.A., Savvotin, I.M., et al., Micropor. Mesopor. Mater., 2019, vol. 277, p. 132. https://doi.org/10.1016/j.micromeso.2018.10.026

Download references


The authors thank K.A. Kovalenko (A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences) for provided MIL-101 samples.


This work is financially supported by Russian Science Foundation (grant 19-13-00207).

Author information

Correspondence to S. N. Klyamkin.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konik, P.A., Yablokova, M.Y., Yankova, N.A. et al. The Influence of Polymer Concentration and Formation Technique on Gas Transport and Gas Sorption Properties of Copolyetherimide-Based Composite Membranes Containing MIL-101 Filler. Moscow Univ. Chem. Bull. 74, 273–278 (2019). https://doi.org/10.3103/S0027131419060105

Download citation


  • composite membranes
  • gas separation
  • morphology
  • gas transport properties
  • gas sorption properties
  • permeability