Moscow University Chemistry Bulletin

, Volume 74, Issue 5, pp 223–228 | Cite as

Comparative Analysis of the Properties of Recombinant Endo-1,4-β-Glucanase II and Its Chimeric Form with a Cellular Binding Module

  • O. G. Korotkova
  • M. V. Semenova
  • E. A. Rubtsova
  • O. A. Sinitsyna
  • E. G. Kondrat’eva
  • N. M. Bibikov
  • A. M. RozhkovaEmail author
  • A. P. Sinitsyn


A chimeric form of Penicillium verruculosum endo-1,4-β-glucanase II (EGII), the C-terminus of which contains a cellulose-binding module (CBM) of P. verruculosum cellobiohydrolase I, is produced by the genetic engineering method. In the native form, the eglI gene does not have a region encoding CBM. The resulting chimeric enzyme is isolated in a homogeneous form and its properties are studied. The addition of CBM to EGII led to a significant increase in the activity of the chimeric enzyme relative to microcrystalline cellulose (MCC) and the appearance of its adsorption capacity in relation to cellulose. However, the addition of CBM to EGII led to a decrease in activity towards soluble polysaccharide substrates (carboxymethylcellulose and β-glucan). The chimeric form of the enzyme in the composition of the cellulase complex allowed us to hydrolyze cellulose-containing substrates more effectively. The yield of reducing sugars (RS) in the case of MCC hydrolysis after 24 h with a cellulose complex containing cellobiohydrolase I, β-glucosidase, and EGII-CBM in comparison with a complex containing EGII without CBM increased by 22%, while for chopped aspen wood the RS increased by 42%.


endo-1,4-b-endoglucanase complex of cellulases cellulose-binding module hydrolysis Penicillium verruculosum 



This work was partly supported by the Russian Foundation for Basic Research, project no. 18-54-80027.


The authors state that they have no conflict of interest.


  1. 1.
    Kumar, R., Singh, S., and Singh, O.V., J. Ind. Microbiol. Biotechnol., 2008, vol. 35, no. 5, p. 377.CrossRefGoogle Scholar
  2. 2.
    Merino, S.T. and Cherry, J., Adv. Biochem. Eng./Biotechnol., 2007, vol. 108, p. 95.Google Scholar
  3. 3.
    Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M., Bioresour. Technol., 2010, vol. 101, p. 1570.CrossRefGoogle Scholar
  4. 4.
    Tseng, C.W., Ko, T.P., Guo, R.T., Huang, J.W., Wang, H.C., Huang, C.H., Xheng, Y.S., Wang, A., and Liu, J.R., Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 2011, vol. 67, no. 10, p. 1189.CrossRefGoogle Scholar
  5. 5.
    Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Biotechnol. J., 2010, vol. 5, p. 871.CrossRefGoogle Scholar
  6. 6.
    Lee, T.M., Farrow, M.F., Arnold, F.H., and Mayo, S.L., Protein Sci., 2011, vol. 20, no. 11, p. 1935.CrossRefGoogle Scholar
  7. 7.
    Volkov, P.V., Rozhkova, A.M., Pravil’nikov, A.G., Andrianov, R.M., Dotsenko, G.S., Bekkarevich, A.O., Koshelev, A.V., Okunev, O.N., Zorov, I.N., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2012, vol. 48, no. 1, p. 66.CrossRefGoogle Scholar
  8. 8.
    Sinitsyn, A.P. and Rozhkova, A.M., in Microbiology Monographs, Heidelberg: Springer, 2015, p. 1.Google Scholar
  9. 9.
    Aslanidis, C. and de Jong, J.P., Nucleic Acids Res., 1990, vol. 18, p. 6069.CrossRefGoogle Scholar
  10. 10.
    Sanger, F., Nicklen, S., and Chase, A.R., Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, p. 5463.CrossRefGoogle Scholar
  11. 11.
    Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuch, A.J., Curr. Genet., 1995, no. 28, p. 474.Google Scholar
  12. 12.
    James, P., Proteome Research: Mass Spectrometry—Principles and Practice, Heidelberg: Springer, 2001.CrossRefGoogle Scholar
  13. 13.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Research methods and properties of cellulolytic enzymes, Itogi Nauki Tekh., Ser.: Biotekhnol., Moscow: VINITI, 1990, vol. 25, p. 30.Google Scholar
  14. 14.
    Vlasenko, E., Schulein, M., Cherry, J., and Xu, F., Bioresour. Technol., 2010, vol. 101, p. 2405.CrossRefGoogle Scholar
  15. 15.
    Chemistry, Biochemistry and Biology of (1–3)-β-Glucans and Related Polysaccharides, Bacic, A., Fincher, G., and Stone, B., Eds., New York: Elsevier, 2019.Google Scholar
  16. 16.
    Dotsenko, A.S., Gusakov, A.V., Volkov, P.V., Rozhkova, A.M., and Sinitsyn, A.P., Biotechnol. Bioeng., 2016, vol. 113, p. 283.CrossRefGoogle Scholar
  17. 17.
    Merzlov, D.A., Zorov, I.N., Dotsenko, G.S., Denisenko, Yu.A., Rozhkova, A.M, Satrutdinov, A.D., Rubtsova, E.A., Kondrat’eva, E.G., and Sinitsyn, A.P., Biochemistry (Moscow), 2015, vol. 80, no. 4, p. 473.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • O. G. Korotkova
    • 1
  • M. V. Semenova
    • 1
  • E. A. Rubtsova
    • 1
  • O. A. Sinitsyna
    • 2
  • E. G. Kondrat’eva
    • 1
  • N. M. Bibikov
    • 3
  • A. M. Rozhkova
    • 1
    Email author
  • A. P. Sinitsyn
    • 1
    • 2
  1. 1.Federal Research Centre Fundamentals of Biotechnology, Russian Academy of SciencesMoscowRussia
  2. 2.Department of Chemical Enzymology, Moscow State UniversityMoscowRussia
  3. 3.Faculty of Biology, Moscow State UniversityMoscowRussia

Personalised recommendations