Advertisement

Moscow University Chemistry Bulletin

, Volume 74, Issue 5, pp 257–264 | Cite as

Extraction of Phenols From Aqueous Solutions by Magnetic Sorbents Modified with Humic Acids

  • A. S. Gubin
  • P. T. SukhanovEmail author
  • A. A. Kushnir
Article
  • 13 Downloads

Abstract

Sorption of phenol, 4-nitrophenol, pentachlorophenol, and nonylphenol is studied using a magnetic sorbent based on Fe3O4 nanoparticles modified with humic acids (HAs) isolated from various natural sources (brown coal, peat, chernozem, and sapropel). The properties of the resulting sorbents, namely, specific surface area, saturation magnetization, and content of hydroxyl and carboxyl groups, as well as nitrogen, are studied. The best conditions for the extraction of all phenols are achieved at pH 3–6, except for pentachlorophenol, for which the highest degree of extraction is achieved at pH 3–4. The maximum recoveries of phenol, 4-nitrophenol, pentachlorophenol, and nonylphenol are 61, 68, 89, and 94%, respectively.

Keywords:

humic acids magnetic sorbent phenol sorption 

Notes

FUNDING

This work was performed in accordance with the work plans of the departments of Voronezh State University of Engineering Technology.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Kholodov, V.A., Yaroslavtseva, N.V., Konstantinov, A.I., and Perminova, I.V., Eurasian Soil Sci., 2015, vol. 48, no. 10, p. 1101.CrossRefGoogle Scholar
  2. 2.
    Gomes de Melo, B.A., Lopes Motta, F., and Andrade Santana, M.H., Mater. Sci. Eng. C, 2016, vol. 62, p. 967.CrossRefGoogle Scholar
  3. 3.
    Delle Site, A., J. Phys. Chem. Ref. Data, 2001, vol. 30, no. 1, p. 187.CrossRefGoogle Scholar
  4. 4.
    Tolmacheva, V.V., Apyari, V.V., Kochuk, E.V., and Dmitrienko, S.G., J. Anal. Chem., 2016, vol. 71, no. 4, p. 321.  https://doi.org/10.1134/S1061934816080153 CrossRefGoogle Scholar
  5. 5.
    Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Song, H., and Gu, J., J. Hazard. Mater., 2012, vols. 209–210, p. 193.CrossRefGoogle Scholar
  6. 6.
    Koesnarpadi, S., ARPNJ. Eng. Appl. Sci., 2016, vol. 11, no. 16, p. 9958.Google Scholar
  7. 7.
    Koesnarpadi, S., Santosa, S.J., Siswanta, D., and Rusdiarso, B., Procedia Environ. Sci., 2015, vol. 30, p. 103.CrossRefGoogle Scholar
  8. 8.
    Liu, J., Zhao, Z., and Jiang, G., Environ. Sci. Technol., 2008, vol. 42, no. 18, p. 6949.CrossRefGoogle Scholar
  9. 9.
    Tang, Z., Zhao, X., Zhao, T., Wang, H., Wang, P., Wu, F., and Giesy, J.P., Environ. Sci. Technol., 2016, vol. 50, no. 16, p. 8640.CrossRefGoogle Scholar
  10. 10.
    Koesnarpadi, S., Santosa, S.J., Siswanta, D., and Rusdiarso, B., Indones. J. Chem., 2017, vol. 17, no. 2, p. 274.CrossRefGoogle Scholar
  11. 11.
    Yuanbo, Z., Peng, L., Youlian, Z., Guanghui, L., Bin, X., and Tao, J., J. Cent. South Univ., 2012, vol. 19, p. 1967.CrossRefGoogle Scholar
  12. 12.
    Illés, E. and Tombácz, E., Colloids Surf., A, 2003, vol. 230, nos. 1–3, p. 99.CrossRefGoogle Scholar
  13. 13.
    Leone, V., Capasso, S., Chianese, S., Iovino, P., and Musmarra, D., Environ. Sci. Technol., 2018, vol. 25, no. 27, p. 26831.Google Scholar
  14. 14.
    Iovino, P., Leone, V., Salvestrini, S., and Capasso, S., Desalin. Water Treat., 2014, vol. 56, no. 1, p. 55.CrossRefGoogle Scholar
  15. 15.
    Li, C., Berns, A.E., Schäffer, A., Sequaris, J.M., Vereecken, H., Ji, R., and Klumpp, E., Chemosphere, 2011, vol. 84, no. 4, p. 409.CrossRefGoogle Scholar
  16. 16.
    Gubin, A.S., Sukhanov, P.T., Kushnir, A.A., and Proskuryakova, E.D., Russ. J. Appl. Chem., 2018, vol. 91, no. 10, p. 1626.  https://doi.org/10.1134/S1070427218100099 CrossRefGoogle Scholar
  17. 17.
    Lanin, S.N., Rychkova, S.A., Vinogradov, A.E., Viryasov, M.B., Vlasenko, E.V., Lanina, K.S., Nesterenko, P.N., and Khokhlova, T.D., Sorbtsionnye Khromatogr.Protsessy, 2017, vol. 17, no. 1, p. 63.Google Scholar
  18. 18.
    Bremner, J., J. Agric. Sci., 1960, vol. 55, no. 1, p. 11.CrossRefGoogle Scholar
  19. 19.
    Ribeiro da Silva, R., Nunes Lucena, G., Franciely Machado, Â., Araujo de Freitas, G., Teixeira Matos, A., and Pereira Abrahão, W.A., Comun. Sci., 2018, vol. 9, no. 2, p. 264.CrossRefGoogle Scholar
  20. 20.
    Amia, S., Hafidi, M., Merlina, G., Hamdi, H., and Revel, J.-C., Agronomie, 2004, vol. 24, p. 13.CrossRefGoogle Scholar
  21. 21.
    Pospíšilová, L. and Fasurová, N., Soil Water Res., 2009, vol. 4, no. 4, p. 168.CrossRefGoogle Scholar
  22. 22.
    ChemAxon. https://chemaxon.com/products/marvin.Google Scholar
  23. 23.
    Kujawski, W., Warszawski, A., Ratajczak, W., Porębski, T., Capała, W., and Ostrowska, I., Desalination, 2004, vol. 163, nos. 1–3, p. 287.CrossRefGoogle Scholar
  24. 24.
    Sukhanov, P.T. and Kushnir, A.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2019, vol. 74, no. 2, p. 88.  https://doi.org/10.3103/S0027131419020081 CrossRefGoogle Scholar
  25. 25.
    Bouras, O., Bollinger, J.C., and Baudu, M., Appl. Clay Sci., 2010, vol. 50, no. 1, p. 58.CrossRefGoogle Scholar
  26. 26.
    Pan, J., Li, L., Hang, H., Ou, H., Zhang, L., Yan, Y., and Shi, W., Chem. Eng. J., 2013, vol. 223, p. 824.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Voronezh State University of Engineering TechnologyVoronezhRussia

Personalised recommendations