Advertisement

Moscow University Chemistry Bulletin

, Volume 73, Issue 5, pp 237–243 | Cite as

Multicopper Oxidase-Catalyzed Biotransformation of Dihydroquercetin

  • M. E. Khlupova
  • I. S. Vasil’eva
  • G. P. Shumakovich
  • O. V. Morozova
  • E. A. Zaitseva
  • V. A. Chertkov
  • A. K. Shestakova
  • A. V. Kisin
  • A. I. YaropolovEmail author
Article
  • 7 Downloads

Abstract

Multicopper oxidases such as bilirubin oxidase (BOD) from Myrothecium verrucaria and laccase (LC) from the basidial fungus Trametes hirsuta have been used as catalysts in dihydroquercetin (DHQ) oxidative polymerization. The conditions selected enabled good yields of DHQ oligomers, which were then analyzed using UV-vis, FTIR, 1Н and 13С NMR spectroscopy. DHQ oligomers synthesized using both enzymes showed higher thermostability as compared with the monomer. Depending on the oxidase, the products of DHQ polymerization differed in physicochemical properties, and as shown by NMR studies, had different structures.

Keywords

biocatalysis bilirubinoxidase fungal laccase dihydroquercetin enzymatic polymerization NMR investigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldrian, P., FEMS Microbiol. Rev., 2006, vol. 30, no. 2, p. 215.CrossRefGoogle Scholar
  2. 2.
    Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., Chem. Rev., 1996, vol. 96, no. 7, p. 2563.CrossRefGoogle Scholar
  3. 3.
    Witayakran, S. and Ragauskas, A.J., Adv. Synth. Catal., 2009, vol. 351, no. 9, p. 1187.CrossRefGoogle Scholar
  4. 4.
    Walde, P. and Guo, Z., Soft Matter, 2011, vol. 7, no. 2, p. 316.CrossRefGoogle Scholar
  5. 5.
    Hollmann, F. and Arends, I.W.C.E., Polymers, 2012, vol. 4, no. 1, p. 759.CrossRefGoogle Scholar
  6. 6.
    Mejias, L., Reihmann, M.H., Sepulveda-Boza, S., and Ritter, H., Macromol. Biosci., 2002, vol. 2, no. 1, p. 24.CrossRefGoogle Scholar
  7. 7.
    Kim, Y.-J., Uyama, H., and Kobayashi, Sh., Macromolecules, 2003, vol. 36, no. 14, p. 5058.CrossRefGoogle Scholar
  8. 8.
    Magharabi, M. and Faramazzi, M.A., Adv. Synth. Catal., 2014, vol. 356, no. 5, p. 897.CrossRefGoogle Scholar
  9. 9.
    Hagerman, A.E., Riedl, K.M., Jones, G.A., Sovik, K.N., Ritchard, N.T., Hartzfeld, P.W., and Riechel, T.L., J. Agric. Food Chem., 1998, vol. 46, no. 5, p. 1887.CrossRefGoogle Scholar
  10. 10.
    Kurisawa, M., Chung, J.E., Uyama, H., and Kobayashi, S., Biomacromolecules, 2003, vol. 4, no. 5, p. 1394.CrossRefGoogle Scholar
  11. 11.
    Kurisawa, M., Chung, J.E., Uyama, H., and Kobayashi, S., Macromol. Biosci., 2003, vol. 3, no. 12, p. 758.CrossRefGoogle Scholar
  12. 12.
    Zhao, J., Wang, J., Chen, Y., and Agarwa, R., Carcinogenes, vol. 20, no. 9, p. 1737.Google Scholar
  13. 13.
    Makena, P.S., Pierce, S.C., Chung, K.-T., and Sinclair, S.E., Environ. Mol. Mutagen., 2009, vol. 50, no. 6, p. 451.CrossRefGoogle Scholar
  14. 14.
    Weidmann, A.E., Eur. J. Pharmacol., 2012, vol. 684, nos. 1–3, p. 19.CrossRefGoogle Scholar
  15. 15.
    Pantouris, G. and Mowat, Ch.G., Biochem. Biophys. Res. Commun., 2014, vol. 443, no. 1, p. 28.CrossRefGoogle Scholar
  16. 16.
    Polyak, S.J., Morishima, Ch., Lohmann, V., Pal, S., Lee, D.Y.W., Liu, Y., and Graf, T.N., Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 13, p. 5995.CrossRefGoogle Scholar
  17. 17.
    Soto, M., Murakami, K., Uno, M., Ikubo, H., Nakagama, Yu., Katayama, S., Akagi, K., and Irie, K., Biosci. Biotechnol. Biochem., 2013, vol. 77, no. 5, p. 1100.CrossRefGoogle Scholar
  18. 18.
    Bordoni, A., Hrelia, S., Angeloni, C., Giordano, E., Guarnieri, C., Caldarera, C.M., and Bia, P.L., J. Nutr. Biochem., 2002, vol. 13, no. 2, p. 103.CrossRefGoogle Scholar
  19. 19.
    Ferry, D.R., Smith, A., Malkhandi, J., Fyfe, D.W., Takats, P.G., Anderson, D., Baker, J., and Kerr, D.J., Clin. Cancer Res., 1996, vol. 2, no. 4, p. 659.Google Scholar
  20. 20.
    Ono, K., Nakane, H., Fukushima, M., Chermann, J.-C., and Barre-Sinoussi, F., Eur. J. Biochem., 1990, vol. 190, no. 3, p. 469.CrossRefGoogle Scholar
  21. 21.
    Zhang, Zh.R., Zaharna, M.A., Wong, M.M.-K., Chin, S.-K., and Cheng, H.-Y., PLoS One, 2013, vol. 8, no. 1.Google Scholar
  22. 22.
    Hollman, P.C. and Katan, M.B., Biomed. Pharmacother., 1997, vol. 51, no. 8, p. 305.CrossRefGoogle Scholar
  23. 23.
    Gorshina, E.S., Rusinova, T.V., Biryukov, V.V., Morozova, O.V., Shleev, S.V., and Yaropolov, A.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 6, p. 558.CrossRefGoogle Scholar
  24. 24.
    Brand-Williams, W., Cuvelier, M.E., and Berset, C., LWT—Food Sci. Technol., 1995, vol. 28, no. 1, p. 25.Google Scholar
  25. 25.
    Bruno, F.F., Trotta, A., Fossey, S., Nagarajan, S., Nagarajan, R., Samuelson, L.A., and Kumar, J., J. Macromol. Sci., Part A: Pure Appl.Chem., 2010, vol. 47, no. 12, p. 1191.Google Scholar
  26. 26.
    Park, S.Y., Kim, YH., Won, K., and Song, B.K., J. Mol. Catal. B: Enzym., 2009, vol. 57, no. 1.Google Scholar
  27. 27.
    Won, K., Kim, Y.H., An, E.S., Lee, Y.S., and Song, B.K., Biomacromolecules, 2004, vol. 5, no. 1, p. 1.CrossRefGoogle Scholar
  28. 28.
    Kiehlmann, E. and Slade, P.W., J. Nat. Prod., 2003, vol. 66, no. 12, p. 1562.CrossRefGoogle Scholar
  29. 29.
    Kolesnik, Y.A., Titova, E.V., Chertkov, V.A., Tashlitskiy, V.N., Tichonov, V.P., and Shmatkov, D.A., Planta Med., 2011, vol. 77, no. 12, p. 1266.CrossRefGoogle Scholar
  30. 30.
    Sinha, R., Joshi, A., Joshi, U.J., Srivastava, S., and Govil, G., Eur. J. Med. Chem., 2014, vol. 80, p. 285.CrossRefGoogle Scholar
  31. 31.
    Cotterill, P.J., Scheinmann, F., and Stenhouse, I.A., J. Chem. Soc., Perkin Trans. 1, 1978, no. 6, p. 532.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. E. Khlupova
    • 1
  • I. S. Vasil’eva
    • 1
  • G. P. Shumakovich
    • 1
  • O. V. Morozova
    • 1
  • E. A. Zaitseva
    • 2
  • V. A. Chertkov
    • 3
  • A. K. Shestakova
    • 4
  • A. V. Kisin
    • 4
  • A. I. Yaropolov
    • 1
    Email author
  1. 1.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Enzymology, Faculty of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Department of Organic Chemistry, Faculty of ChemistryMoscow State UniversityMoscowRussia
  4. 4.State Research Institute of Chemistry and Technology of Organoelement CompoundsMoscowRussia

Personalised recommendations