Advertisement

Moscow University Chemistry Bulletin

, Volume 73, Issue 5, pp 251–256 | Cite as

Interaction of Silver Clusters with Cholesterol Ligands

  • A. Yu. Ermilov
  • E. S. Lukyanova
  • Ya. A. Gromova
  • T. I. ShabatinaEmail author
Article
  • 6 Downloads

Abstract

The structures of small silver clusters (Ag2, Ag3, Ag13) and their interaction with ligands of the cholesterol series, namely, cholesterol (Ch) and thiocholesterol (TCh), are calculated by the density functional theory (DFT) methods and the second-order Møller–Plesset perturbation theory (MP2). Trends in the geometric structure and interaction energy of the silver–cholesterol ligand cluster are estimated depending on the size of the metal cluster and the replacement of cholesterol by the sulfur-containing analogue. For Ch–Ag13 and TCh–Ag13 systems, the geometric structure of the metallic subsystem is a slightly distorted icosahedron with the Ag–Ag bond length ranged 2.8–3.0 Å. Cholesterol is coordinated to the icosahedral facet so that the shortest Ag–O distances range from 2.3 to 2.4 Å. In the case of thiocholesterol, a configuration in which the ligand is coordinated by the edge of the icosahedron with two approximately equal distances of Ag–S (2.537 and 2.547 Å) is preferable.

Keywords

silver clusters hybrid materials mesogenic systems density functional theory cholesterol thiocholesterol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belyaev, A.A., Shabatina, T.I., and Sergeev, G.B., BioNanoScience, 2013, vol. 3, p. 289.CrossRefGoogle Scholar
  2. 2.
    Shabatina, T.I., Belyaev, A.A., and Sergeev, G.B., Mol. Cryst. Liq. Cryst., 2011, vol. 540, no. 1, p. 169.CrossRefGoogle Scholar
  3. 3.
    Simard, B., Hackett, P.A., James, A.M., and Langridge-Smith, P.R.R., Chem. Phys. Lett., 1991, vol. 186, nos. 4–5, p. 415.Google Scholar
  4. 4.
    NIST Chemistry Webbook. http://webbook.nist.gov/chemistry/.Google Scholar
  5. 5.
    Krasnov, K.S., Filipenko, N.V., Bobkova, V.A., et al., Molekulyarnye postoyannye neorganicheskikh soedinenii: spravochnik (Molecular Constants of Inorganic Compounds: A Reference Book), Krasnov, K.S., Ed., Leningrad: Khimiya, 1979.Google Scholar
  6. 6.
    EMSL Basis Set Library. https://bse.pnl.gov/bse/portal.Google Scholar
  7. 7.
    Ermilov, A.Yu. and Shabatina, T.I., Abstracts of Papers, Conf. on Chemistry and Physics at Low Temperatures, Suzdal, 2014, p. 24.Google Scholar
  8. 8.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347. http://www.msg.ameslab.gov/gamess.CrossRefGoogle Scholar
  9. 9.
    Supercomputer Center of the Moscow State University. http://www.parallel.ru.Google Scholar
  10. 10.
    Ellis, A.M., Robles, E.S.J., and Miller, T.A., Chem. Phys. Lett., 1993, vol. 201, p. 132.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. Yu. Ermilov
    • 1
  • E. S. Lukyanova
    • 1
  • Ya. A. Gromova
    • 1
  • T. I. Shabatina
    • 1
    Email author
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations